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• Autonomous vehicles would have to be driven hundreds 
of millions of miles and sometimes hundreds of billions 
of miles to demonstrate their reliability in terms of fatali-
ties and injuries. 

• Under even aggressive testing assumptions, existing 
fleets would take tens and sometimes hundreds of years 
to drive these miles—an impossible proposition if the 
aim is to demonstrate their performance prior to releas-
ing them on the roads for consumer use.

• Therefore, at least for fatalities and injuries, test-driving 
alone cannot provide sufficient evidence for demonstrat-
ing autonomous vehicle safety.

• Developers of this technology and third-party testers 
will need to develop innovative methods of demonstrat-
ing safety and reliability.

• Even with these methods, it may not be possible to 
establish with certainty the safety of autonomous 
vehicles. Uncertainty will persist.

• In parallel to creating new testing methods, it is impera-
tive to develop adaptive regulations that are designed 
from the outset to evolve with the technology so that 
society can better harness the benefits and manage the 
risks of these rapidly evolving and potentially transfor-
mative technologies. 

Key findings In the United States, roughly 32,000 people are killed and 
more than two million injured in crashes every year (Bureau 
of Transportation Statistics, 2015). U.S. motor vehicle 

crashes as a whole can pose economic and social costs of more 
than $800 billion in a single year (Blincoe et al., 2015). And, 
more than 90 percent of crashes are caused by human errors 
(National Highway Traffic Safety Administration, 2015)—such 
as driving too fast and misjudging other drivers’ behaviors, as 
well as alcohol impairment, distraction, and fatigue. 

Autonomous vehicles have the potential to significantly 
mitigate this public health crisis by eliminating many of the 
mistakes that human drivers routinely make (Anderson et al., 
2014; Fagnant and Kockelman, 2015). To begin with, autono-
mous vehicles are never drunk, distracted, or tired; these fac-
tors are involved in 41 percent, 10 percent, and 2.5 percent of 
all fatal crashes, respectively (National Highway Traffic Safety 
Administration, 2011; Bureau of Transportation Statistics, 
2014b; U.S. Department of Transportation, 2015).1 Their 
performance may also be better than human drivers because of 
better perception (e.g., no blind spots), better decisionmaking 
(e.g., more-accurate planning of complex driving maneuvers 
like parallel parking), and better execution (e.g., faster and 
more-precise control of steering, brakes, and acceleration). 

However, autonomous vehicles might not eliminate all 
crashes. For instance, inclement weather and complex driving 
environments pose challenges for autonomous vehicles, as well 
as for human drivers, and autonomous vehicles might perform 
worse than human drivers in some cases (Gomes, 2014). There 
is also the potential for autonomous vehicles to pose new and 

1 This does not mean that 53.5 percent of all fatal crashes are caused by 
these factors because a crash may involve, but not be strictly caused by, 
one of these factors, and because more than one of these factors may 
be involved in a single crash.
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serious crash risks, e.g., crashes resulting from cyberattacks 
(Anderson et al., 2014). Clearly, autonomous vehicles present 
both enormous potential benefits and enormous potential risks.

Given the high stakes, policymakers, the transportation 
industry, and the public are grappling with a critical concern: 
How safe should autonomous vehicles be before they are 
allowed on the road for consumer use? For the answer to be 
meaningful, however, one must also be able to address a second 
concern: How safe are autonomous vehicles? 

Perhaps the most logical way to assess safety is to test-drive 
autonomous vehicles in real traffic and observe their perfor-
mance. Developers of autonomous vehicles rely upon this 
approach to evaluate and improve their systems,2 almost always 
with trained operators behind the wheel who are ready to take 
control in the event of an impending failure incident.3 They 
can analyze the failure incident after the fact to assess what the 
autonomous vehicle would have done without intervention, and 
whether it would have resulted in a crash or other safety issue 
(Google, 2015). Developers have presented data from test driv-
ing to Congress in hearings about autonomous vehicle regula-
tion (Urmson, 2016).

But is it practical to assess autonomous vehicle safety 
through test-driving? The safety of human drivers is a critical 
benchmark against which to compare the safety of autonomous 
vehicles. And, even though the number of crashes, injuries, and 
fatalities from human drivers is high, the rate of these failures is 
low in comparison with the number of miles that people drive. 
Americans drive nearly 3 trillion miles every year (Bureau of 
Transportation Statistics, 2015). The 2.3 million reported inju-
ries in 2013 correspond to a failure rate of 77 reported injuries 
per 100 million miles. The 32,719 fatalities in 2013 correspond 
to a failure rate of 1.09 fatalities per 100 million miles. 

For comparison, Google’s autonomous vehicle fleet, which 
currently has 55 vehicles, was test-driven approximately  

2 Extensive testing on public roads is essential for developing and 
evaluating autonomous vehicles, given their great complexity and the 
diversity and unpredictability of conditions in which they need to 
operate. In contrast, typical automobile components are significantly 
simpler and their operating conditions can be well defined and recre-
ated in controlled settings, which enables laboratory testing and verifi-
cation. Curtain-style air bags, for example, are tested with a combina-
tion of component tests to assess inflation time, fill capacity, and other 
responses in a range of temperature conditions and impact configura-
tions, as well as laboratory crash testing to evaluate their performance 
in collisions (Kaleto et al., 2001).
3 Some states, such as California, require trained drivers to be behind 
the wheel of any autonomous vehicle driving on public roads (Califor-
nia Vehicle Code, 2012). 

1.3 million miles in autonomous mode and was involved in 
11 crashes from 2009 to 2015.4 Blanco et al. (2016) recently 
compared Google’s fleet performance with human-driven per-
formance. They found that Google’s fleet might result in fewer 
crashes with only property damage, but they could not draw 
conclusions about the relative performance in terms of two 
critical metrics: injuries and fatalities. Given the rate of human 
and autonomous vehicle failures, there were simply not enough 
autonomously driven miles to make statistically significant 
comparisons.

In this report, we answer the next logical question: How 
many miles would be enough? In particular, we first ask:

1.  How many miles would autonomous vehicles have to be  
 driven without failure to demonstrate that their failure  
 rate is below some benchmark?
This provides a lower bound on the miles that are needed. 

However, autonomous vehicles will not be perfect and failures 
will occur. Given imperfect performance, we next ask:

2.  How many miles would autonomous vehicles have to   
 be driven to demonstrate their failure rate to a particular  
 degree of precision?

3.  How many miles would autonomous vehicles have to be  
 driven to demonstrate that their failure rate is statisti-  
 cally significantly lower than the human driver failure   
 rate?

We answer each of these questions with straightforward 
statistical approaches. Given that fatalities and injuries are rare 
events, we will show that fully autonomous vehicles5 would 
have to be driven hundreds of millions of miles and sometimes 

4 Two of these crashes involved injury and none involved a fatality. 
Seven of the crashes did not reach a level of severity that would warrant 
a Department of Motor Vehicles report (Blanco et al., 2016).
5 Note that the term “autonomous vehicle” can refer to different 
degrees of autonomy. The Society for Automotive Engineers Interna-
tional (2014), for example, defines three levels of automated driving. 
Vehicles with “conditional automation” can drive themselves in certain 
conditions but may request human intervention. Vehicles with “high 
automation” can drive themselves in certain conditions without requir-
ing human intervention. Vehicles with “full automation” can drive 
under all roadway and environmental conditions in which a human 
can drive. The numerical results in this report assess the miles needed 
to demonstrate the reliability of this last class of fully autonomous 
vehicles. Therefore, we use the total fatality, injury, and crash rates of 
human drivers in the United States as benchmarks against which to 
compare autonomous vehicle performance. However, the statistical 
approaches described in this report can be used to compare the reli-
ability for any autonomy mode. Doing so would require changing the 
human performance benchmarks against which these other modes are 
compared. 
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hundreds of billions of miles to demonstrate their reliability in 
terms of fatalities and injuries. Under even aggressive testing 
assumptions, existing fleets would take tens and sometimes 
hundreds of years to drive these miles—an impossible proposi-
tion if the aim is to demonstrate their performance prior to 
releasing them on the roads for consumer use. 

These results demonstrate that developers of this technol-
ogy and third-party testers cannot simply drive their way to 
safety. Instead, they will need to develop innovative methods of 
demonstrating safety and reliability. This is a rapidly growing 
area of research and development. We hope the data and figures 
in this paper will serve as a useful reference in developing those 
alternative methods, and a benchmark and method for assess-
ing their efficiency.

The next three sections provide an explanation, analysis, 
and results for each of these questions. We end with a sum-
mary and discussion of results and draw conclusions about their 
implications for stakeholders of autonomous vehicle technology.

HOW MANY MILES WOULD 
AUTONOMOUS VEHICLES HAVE TO 
BE DRIVEN WITHOUT FAILURE TO 
DEMONSTRATE THAT THEIR FAILURE 
RATE IS BELOW SOME BENCHMARK? 

We can answer this question by reframing failure rates as 
reliability rates and using success run statistics based on the 
binomial distribution (O’Connor and Kleyner, 2012). If the 
per-mile failure rate of a vehicle is F, then the reliability R is 
1–F and can be interpreted as the probability of not having a 
failure in any given mile. In practice, unless the technology 
is truly perfect, there likely will be failures during testing.6 
However, a simple “no failures” scenario (see Equation 1) can 
be used to estimate a lower bound on the number of failure-free 
miles, n, that would be necessary to establish the reliability of 
driverless cars with confidence level C:7 

6 In the case of an imperfect vehicle, the probability C of a driverless 
car with reliability R having k failures while driving N miles is:

7 In reliability testing, the confidence level of 100(1-α)% is the prob-
ability that the true failure rate is within some range [0, U], where U is 
a random variable for the upper bound; or, equivalently, the prob-
ability of the true success rate (reliability) is within [1−U, 1] (Darby, 

      (Eq. 1)

This is useful if, for example, a developer has driven 
autonomous vehicles for a certain number of failure-free miles 
and wishes to know the reliability (or, equivalently, the failure 
rate) that can be claimed at a particular level of confidence. 
Alternatively, for a given confidence C and reliability R we can 
solve for n, the number of miles required with no failures: 

      (Eq. 2)

This equation is usually used to show the survival of a 
product based on duration of use (Kleyner, 2014).

To demonstrate that fully autonomous vehicles have 
a fatality rate of 1.09 fatalities per 100 million miles 
(R=99.9999989%) with a C=95% confidence level, the 
vehicles would have to be driven 275 million failure-free miles. 
With a fleet of 100 autonomous vehicles being test-driven 
24 hours a day, 365 days a year at an average speed of 25 miles 
per hour, this would take about 12.5 years.

Figure 1 shows how many failure-free miles fully autono-
mous vehicles would have to be driven to demonstrate maxi-
mum failure rates to different levels of confidence. We chose a 
range of 1 to 400 failures per 100 million miles to include the 
range of fatality, injury, and crash rates for human drivers. For 
reference, we show the failure rate of human drivers as dashed 
vertical lines.8 Reference lines are shown for fatalities (1.09), 

2010). Once data are observed and u is estimated, then u is no longer 
random, and the interval [1−u, 1] either does or does not contain the 
true failure rate. Thus, the interval is described in terms of a confidence 
level rather than a probability (Martz and Waller, 1982).
8 These rates reflect failures from all motor vehicles, including cars and 
light trucks, motorcycles, large trucks, and buses. One could restrict 
comparisons to only some subsets of these data, e.g., omitting motor-
cycle fatalities, which occur at a rate that is 20 times higher than the 
overall fatality rate (about 23 fatalities per 100 million miles driven) 
(Bureau of Transportation Statistics, 2014a). This would not change 
the statistical methods shown here, but the miles needed to demon-
strate comparative levels of performance would change. For example, 
by omitting motorcycle fatalities, the remaining human-driven fatality 
rate would decrease and so the miles needed to demonstrate comparable 
autonomous vehicle performance would increase. We use overall failure 
rates because there is the potential for all travel to occur in autonomous 
vehicles and for autonomous vehicles to affect the safety of all road 
users. It is possible, for example, that current motorcyclists may in the 
future choose to travel by autonomous passenger vehicles for safety or 
other reasons, or that autonomous passenger vehicles may lead to fewer 
motorcycle fatalities, even if motorcycles remain human driven. 

C =1−Rn .

n= ln(1−C )
ln(R)

.

C =1− N !
i ! N −i( )!

RN−i (1−R)i
i=0

k

∑

3



reported injuries (77), and reported crashes (190) per 100 mil-
lion miles. It is also known that injuries and crashes may be 
significantly underreported; one study suggests by 25 percent 
and 60 percent, respectively (Blincoe et al., 2015). Therefore, 
we have also shown reference lines that could reflect a truer 
estimate of human-driven injuries (103) and crashes (382) per  
100 million miles. The 275-million mile data point corre-
sponding to the 95% confidence level is annotated in Figure 1. 
We assess sensitivity to different levels of confidence because 
different fields use different standards that result in large dif-
ferences in the number of required miles. While 95% and 99% 
confidence levels are widely used, the automotive industry 
sometimes uses a 50% confidence level for vehicle components 
(Misra, 2008). The blue, orange, green, and red lines represent 
C=50%, 75%, 95%, and 99%, respectively.

This analysis shows that for fatalities it is not possible to 
test-drive autonomous vehicles to demonstrate their safety to 
any plausible standard, even if we assume perfect performance. 
In contrast, one could demonstrate injury and crash reliability 
to acceptable standards based on driving vehicles a few million 
miles. However, it is important to recognize that this is a theo-

retical lower bound, based on perfect performance of vehicles. 
In reality, autonomous vehicles will have failures—not only 
commonly occurring injuries and crashes in which autonomous 
vehicles have already been involved, but also fatalities. Our sec-
ond and third questions quantify the miles needed to demon-
strate reliability through driving given this reality.

HOW MANY MILES WOULD 
AUTONOMOUS VEHICLES HAVE TO 
BE DRIVEN TO DEMONSTRATE THEIR 
FAILURE RATE TO A PARTICULAR 
DEGREE OF PRECISION? 

To estimate the true autonomous vehicle failure rate, we must 
count the number of events (failures) that occur for a given 
distance driven. The failure rate is estimated as  
where x is the number of observed failures observed over n 
miles driven. We can describe the precision of the failure rate 
estimate using the width of a 100(1 – α)% confidence interval 

SOURCE: Authors’ analysis.
NOTE: The four colored lines show results for different levels of confidence. The five dashed vertical reference lines 
indicate the failure rates of human drivers in terms of fatalities (1.09), reported injuries (77), estimated total injuries 
(103), reported crashes (190), and estimated total crashes (382).
RAND RR1478-1
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       Figure 1. Failure-Free Miles Needed to Demonstrate Maximum Failure Rates

λ̂= x /n ,
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(CI).9 If the number of failures is expected to be greater than 
30, then a normal approximation to the Poisson distribution 
can be used. An approximate CI for the failure rate is:

        
      (Eq. 3)

where      is 100(1−α/2)th quantile of standard normal 
distribution.10 The half-width of the CI, provides 
an estimate of the precision of the failure rate estimate,   

We can calculate the precision relative to the failure 
rate estimate:

which simplifies to 

If δ is our desired degree of precision (e.g., if we wish to esti-
mate the failure rate to within 20%, δ = 0.2) then the number 
of failures one must observe to estimate the failure rate with a 
precision of δ is: 

      (Eq. 4)

If the assumed failure rate (prior to data collection) is  
(Mathews, 2010), then Equation 5 implies the number of miles 
that must be driven is:

      (Eq. 5)

We can demonstrate this as follows. Given some initial data 
on its safety performance, suppose we assume that a fully 

9 In this context, a 100(1 − α)% CI is an estimate of the random 
interval (L, U) that contains the true failure rate λ with probability 
(1− α). If l and u are the estimates of random variables L and U, 
then (l, u) is called the CI for λ with confidence coefficient (1− α)  
(DeGroot, 1986). A 100(1− α)% CI can be interpreted as follows:  
If one were to run the experiment that generated the data and  
conduct the analysis repeatedly, in 100(1− α)% of the samples the  
100(1− α)% CIs calculated in each of those experiments would con-
tain the true mean. 
10 If the number of events is fewer than 30, an exact CI could alterna-
tively be calculated (Ulm, 1990).

λ∗

autonomous vehicle fleet had a true fatality rate of 1.09 per 100 
million miles. We could use this information to determine the 
sample size (number of miles) required to estimate the fatality 
rate of the fleet to within 20% of the assumed rate using a 95% 
CI. We apply Equation 4 to estimate the number of fatalities 
we would need to observe before having this level of precision 
in the fatality rate estimate: (1.96/.20)2 = 96. (Here, 1.96 is the 
z-score associated with a two-sided 95% CI for the standard 
normal distribution.) We apply Equation 5 to determine how 
many miles of driving this would require: 

 

This is approximately 8.8 billion miles. With a fleet of  
100 autonomous vehicles being test-driven 24 hours a day, 365 
days a year at an average speed of 25 miles per hour, this would 
take about 400 years. 

Figure 2 shows how many miles fully autonomous vehicles 
would have to be driven to estimate the failure rate to differ-
ent degrees of precision with 95% confidence. The number of 
miles that must be driven to achieve a given level of precision in 
the failure rate estimate decreases as the failure rate increases. 
The blue, orange, and green lines represent 5%, 10%, and 20% 
precision. As in Figure 1, we show for reference the failure rate 
of human drivers as dashed vertical lines for fatalities (1.09), 
reported injuries (77), estimated total injuries (103), reported 
crashes (190), and estimated total crashes (382) per 100 million 
miles. The 8.8-billion mile data point corresponding to this 
example is annotated in Figure 2.

These results show that it may be impossible to demon-
strate the reliability of high-performing autonomous vehicles 
(i.e., ones with failure rates comparable to or better than human 
failure rates) to any reasonable degree of precision. For instance, 
even if the safety of autonomous vehicles is low—hundreds of 
failures per 100 million miles, which is akin to human-driven 
injury and crash rates—demonstrating this would take tens or 
even hundreds of millions of miles, depending on the desired 
precision. For low failure rates—1 per 100 million miles, which 
is akin to the human-driven fatality rate—demonstrating per-
formance to any degree of precision is impossible—requiring 
billions to hundreds of billions of miles. These results show that 
as autonomous vehicles perform better, it becomes harder—if 
not impossible—to assess their performance with accuracy 
because of the extreme rarity of failure events.
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HOW MANY MILES WOULD 
AUTONOMOUS VEHICLES HAVE TO 
BE DRIVEN TO DEMONSTRATE THAT 
THEIR FAILURE RATE IS STATISTICALLY 
SIGNIFICANTLY LOWER THAN THE 
HUMAN DRIVER FAILURE RATE? 

Setting up the statistical significance test requires that we 
specify the null hypothesis that we are testing, which is that 
the failure rate, λ, is greater than or equal to λ0. Here, we set 
λ0 = H, the human driver failure rate.11 We also must specify 
an alternative hypothesis, which we specify as λ < H. In the 
context of significance testing, α is the significance level, or 
Type 1 error rate of the test, which is defined as the probability 
of rejecting the null hypothesis when the null hypothesis is 

11 We assume H is a known benchmark rather than an estimate of 
some unknown quantity. This gives us the best-case estimate number 
of miles that need to be driven. We discuss the implications of this 
choice after Figure 4.

true—in other words, a false positive. In the context of autono-
mous vehicles, a false positive would occur if data suggest that 
autonomous vehicles perform better than human drivers, when 
in fact they do not—a dangerous proposition for policymakers, 
technology developers, the insurance industry, and of course 
consumers.

To be able to test the null hypothesis with significance level 
α, one can examine the upper confidence bound from Equa-
tion 3 for whether the estimated failure rate is lower than the 
human driver rate, i.e.,12  

If so, then the null hypothesis can be rejected at the αth 
significance level. To assess when the confidence bound 
would be expected to be less than H requires a guess of the 
autonomous vehicle failure rate we expect, λalt. We set 

12 The subscript on z is 1− α here because this is a one-sided hypoth-
esis test.

Figure 2. Miles Needed to Demonstrate Failure Rates to a Particular Degree of Precision
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NOTE: These results use a 95% CI. The three colored lines show results for different levels of precision δ, defined as 
the size of the CI as a percent of the failure rate estimate. The five dashed vertical reference lines indicate the 
failure rates of human drivers in terms of fatalities (1.09), reported injuries (77), estimated total injuries (103), 
reported crashes (190), and estimated total crashes (382).
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 λalt= (1−A) H.13 To determine how many failures (and miles) 
would be required to show this, we can solve for x and n:

      (Eq. 6)

      (Eq. 7)

We can demonstrate this as follows. Suppose a fully 
autonomous vehicle fleet had a true fatality rate that was 
A=20% lower than the human driver fatality rate of 1.09 per 
100 million miles, or 0.872 per 100 million miles. We apply 
Equation 7 to determine the number of miles that must be 

13 If we were interested in testing the alternative hypothesis that λ > H, 
then we would compare the lower confidence bound with H:

x− z1−α x( )
n

>H .

x = λalt
z1−α
λ0−λalt
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⎠
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2

driven to demonstrate with 95% confidence that this difference 
is statistically significant: 

It would take approximately 5 billion miles to demonstrate 
this difference. With a fleet of 100 autonomous vehicles test-
driven 24 hours a day, 365 days a year at an average speed of  
25 miles per hour, this would take about 225 years.

Figure 3 shows how many miles fully autonomous vehicles 
would have to be driven to demonstrate that their failure 
rate is statistically significantly lower than the human driver 
failure rate with 95 percent confidence, given different values 
of A. The different lines represent performance relative to the 
human driver fatality (blue), reported injury (purple), estimated 
total injury (green), reported crash (red), and estimated total 
crash (orange) rates. Note that the miles needed to be driven 
approaches infinity as the difference between the human rate 
and autonomous vehicle rate approaches 0, i.e., as A→0. The 

n= 0.872×10−8 1.645
1.09×10−8−0.872×10−8
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

2

= 4,965,183,486.

Figure 3. Miles Needed to Demonstrate with 95% Confidence that the Autonomous Vehicle 
Failure Rate Is Lower than the Human Driver Failure Rate
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5-billion mile data point for this example is annotated in  
Figure 3.

Setting the significance level, α , accounts for one of the 
two types of errors we could make in significance testing: 
rejecting the null hypothesis when in fact it is true (Type I 
error). A limitation of determining the sample size as shown 
above is that it does not take into consideration Type II error, β, 
which is the second type of error that might occur: not reject-
ing the null hypothesis when the alternative is true. In the 
context of autonomous vehicles, a Type II error would mean 
that data suggest that autonomous vehicles do not perform bet-
ter than human drivers, when in fact they do. While perhaps 
less concerning to stakeholders, this also would be a serious 
error as it could delay the introduction of potentially beneficial 
technology and needlessly perpetuate the risks posed by human 
drivers.

The power of the test, 100(1 − β)%, is the probability of 
correctly rejecting the null hypothesis in favor of the alterna-
tive. The power of the test for a given number of miles, n, and 
hypothesized and assumed rates, λ0 and λalt, respectively, is:

      (Eq. 8)

where Φ(.) is the cumulative standard normal distribution.14 
Building upon our running example, a study with a signifi-
cance level of α=0.05 and a requirement to drive approxi-
mately 5 billion miles would have 50% power to reject the null 
hypothesis. 

One may instead want to know how many miles autono-
mous vehicles need to be driven to avoid Type I errors and Type 
II errors with some probability. Using the normal approxima-
tion for the distribution of fatalities, the number of miles, n, 
required to achieve 100(1 − β)% power at the α significance is:

       (Eq. 9)

Continuing our example, we apply Equation 9 to determine  
the number of miles that autonomous vehicles must be driven 
to determine with 95% confidence and 80% power (i.e.,  

14 For a one-sided test in the other direction, the numerator of the first 
component of Φ(.) would be λalt − λ0.

Power =Φ λ0−λalt
λalt
n
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.

β = 0.2) that their failure rate is 20% better than the human 
driver fatality rate:

Autonomous vehicles would have to be driven more than 
11 billion miles to detect this difference. With a fleet of 100 
autonomous vehicles being test-driven 24 hours a day, 365 days 
a year at an average speed of 25 miles per hour, this would take 
518 years—about a half a millennium.

Figure 4 shows how many miles fully autonomous vehicles 
would have to be driven to demonstrate with 95% confidence 
and 80% power that their failure rate is A% better than the 
human driver failure rate. The different lines represent perfor-
mance relative to the human driver fatality (blue), reported 
injury (purple), estimated total injury (green), reported crash 
(red), and estimated total crash (orange) rates. The 11-billion 
mile data point for this example is annotated in Figure 4. 

These results show that the closer autonomous vehicles are 
to human performance, the more miles are required to dem-
onstrate that the differences are statistically significant. This 
makes sense—the closer two population means are to each 
other, the more samples will be needed to determine if they 
are significantly different. For example, if autonomous vehicles 
improve fatality rates by 5% rather than 20%, the number 
of miles required to demonstrate a statistically significant 
improvement with 95% confidence and 80% power is almost 
ludicrous: 215 billion miles. It would take a fleet of 100 vehicles 
nearly 10,000 years to achieve this. Indeed, for no improvement 
in fatality rates between 5% and 95% would it be impractical 
to drive the requisite number of miles with 100-vehicle fleets. 
For injuries and crashes, until autonomous vehicles are substan-
tially better than human drivers (25% or greater improvement), 
the miles required to demonstrate significant differences over 
human drivers would be impractically large. 

It is possible that if the policy question were to differ from 
how we have framed it that fewer miles could be driven to 
examine the reliability of autonomous vehicles. For example, 
suppose there was a consensus that autonomous vehicles should 
be allowed on the roads, provided their performance was no 
more than some (small) amount worse than human-driven cars, 
but that it was expected that their performance was actually 
better than human-driven cars. In this case, a test of non- 
inferiority could be conducted and the sample size planned 
accordingly (Chow, Shao, and Wang, 2008). 

n= 0.872×10−8 1.645+0.842
1.09×10−8−0.872×10−8
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

2

=11,344,141,710.
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Yet even these results are optimistic. We have intention-
ally framed this analysis to calculate the fewest number of 
miles that would need to be driven to demonstrate statisti-
cally significant differences between autonomous vehicles and 
human drivers. Recall that we treat H as a known benchmark 
against which we can do a one-sample test. Yet H is not a 
known benchmark for three key reasons. First, the performance 
of human drivers in 2013 or any particular year is not the 
benchmark of concern. The concern is whether autonomous 
vehicle performance is better than human driver performance, 
and a single year’s failure data is only an estimate of the true 
rate of human driver failures. Second, injuries and crashes are 
significantly underreported and there is conflicting evidence 
about the rate of underreporting. Experiments in which injuries 
and crashes are accurately recorded could yield different rates. 
Third, human driver performance is changing. Motor vehicle 

fatality rates have fallen in the past several decades. In 1994, 
there were 1.73 fatalities per 100 million miles compared with 
1.09 fatalities per 100 million miles in 2013 (Bureau of Trans-
portation Statistics, 2015). Much of the decline can be attrib-
uted to improvements in vehicle designs (Farmer and Lund, 
2015), which could continue. Thus, the benchmark of human 
driver performance is a moving target. So, if we compare the 
performance of human drivers against autonomous vehicles 
in some time frame, there is uncertainty about whether the 
comparison would hold moving into the future. For all of these 
reasons, it would be appropriate to treat H as uncertain and use 
a two-sample hypothesis test, which would require even more 
failures to be observed and miles to be driven. This suggests it 
is not possible to drive our way to answers to one of the most 
important policy questions about autonomous vehicles: Are 
they safer than human drivers?

Figure 4. Miles Needed to Demonstrate with 95% Confidence and 80% Power that the 
Autonomous Vehicle Failure Rate Is Lower than the Human Driver Failure Rate
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hundreds of years to drive these miles—an impossible proposi-
tion if the aim is to demonstrate their performance prior to 
releasing them on the roads. Only crash performance seems 
possible to assess through statistical comparisons of this kind, 
but this also may take years. Moreover, as autonomous vehicles 
improve, it will require many millions of miles of driving to 
statistically verify changes in their performance.

Our results confirm and quantify that developers of this 
technology and third-party testers cannot drive their way to 
safety. Our findings support the need for alternative methods 
to supplement real-world testing in order to assess autonomous 
vehicle safety and shape appropriate policies and regulations. 
These methods may include but are not limited to accelerated 
testing (Nelson, 2009), virtual testing and simulations (Chen 
and Chen, 2010; Khastgir et al., 2015; Olivares et al., 2015); 
mathematical modeling and analysis (Hojjati-Emami,  
Dhillon, and Jenab, 2012; Kianfar, Falcone, and Fredriksson, 
2013); scenario and behavior testing (California Department 
of Motor Vehicles, 2015; Sivak and Schoettle, 2015); and pilot 
studies (ANWB, 2015), as well as extensive focused testing of 
hardware and software systems.

And yet, even with these methods, it may not be possible 
to establish the safety of autonomous vehicles prior to mak-
ing them available for public use. Uncertainty will remain. 
This poses significant liability and regulatory challenges for 
policymakers, insurers, and developers of the technology, 
and it would be a cause for concern among the public. It also 
suggests that pilot studies may be an essential intermediate 
step for understanding autonomous vehicle performance prior 
to widespread use. Such pilot studies would need to involve 

DISCUSSION AND CONCLUSIONS 

This report frames three different questions about the number 
of miles that autonomous vehicles would have to be driven as 
a method of statistically demonstrating their reliability. We 
lay out the formulas for answering these questions and present 
results for fully autonomous vehicles that can serve as a refer-
ence for those interested in statistically testing their reliability.

Table 1 provides illustrative results from our analysis. The 
three numbered rows show sample results for each of our three 
statistical questions about the miles needed to demonstrate 
safety. Sample results are shown for each of three benchmark 
failures rates noted in the lettered columns. These correspond 
to human-driven (A) fatality rates, (B) reported injury rates, 
and (C) reported crash rates. The results also show in paren-
theses the number of years it would take to drive those miles 
with a fleet of 100 autonomous vehicles driving 24 hours a day, 
365 days a year, at an average speed of 25 miles per hour. For 
example, one can ask, “How many miles (years) would autono-
mous vehicles have to be driven (row 2) to demonstrate with 
95% confidence their failure rate to within 20% of the true 
rate of (column A) 1.09 fatalities per 100 million miles?” The 
answer is 8.8 billion miles, which would take 400 years with 
such a fleet.

The results show that autonomous vehicles would have 
to be driven hundreds of millions of miles and sometimes 
hundreds of billions of miles to demonstrate their reliability in 
terms of fatalities and injuries. Under even aggressive testing 
assumptions, existing fleets would take tens and sometimes 

Benchmark Failure Rate
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How many miles (yearsa) would 
autonomous vehicles have to be 
driven…

(A) 1.09 fatalities per 
100 million miles?

(B) 77 reported 
injuries per 100 
million miles?

(C) 190 reported 
crashes per 100 
million miles?

(1) without failure to demonstrate with 95% 
confidence that their failure rate is at most…

275 million miles 
(12.5 years)

3.9 million miles 
(2 months)

1.6 million miles  
(1 month)

(2) to demonstrate with 95% confidence their 
failure rate to within 20% of the true rate of…

8.8 billion miles 
(400 years)

125 million miles 
(5.7 years)

51 million miles 
(2.3 years)

(3) to demonstrate with 95% confidence and 
80% power that their failure rate is 20% better 
than the human driver failure rate of…

11 billion miles 
(500 years)

161 million miles  
(7.3 years)

65 million miles
(3 years)

a We assess the time it would take to compete the requisite miles with a fleet of 100 autonomous vehicles (larger than any known existing fleet) driving 24 hours 
a day, 365 days a year, at an average speed of 25 miles per hour. 

Table 1. Examples of Miles and Years Needed to Demonstrate Autonomous Vehicle Reliability
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public-private partnerships in which liability is shared among 
developers, insurers, the government, and consumers.

Simultaneously, the technology will evolve rapidly, as will 
the social and economic context in which it is being intro-
duced. In fast-changing contexts such as these, regulations and 
policies cannot take a one-shot approach. Therefore, in paral-
lel to creating new testing methods, it is imperative to begin 
developing approaches for planned adaptive regulation (Eichler 
et al., 2015; Walker, Marchau, and Swanson, 2010). 

Such regulation is designed from the outset to generate 
new knowledge (e.g., through pilot studies), review that knowl-
edge (e.g., through scheduled safety review boards), and use 
that knowledge to evolve with the technology (e.g., by modify-
ing safety requirements). This can help society better harness 
the benefits and manage the risks of these potentially transfor-
mative technologies. 
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