CERTIFIED MAIL
RETURN RECEIPT REQUESTED

Mr. Teiji Iida
Vice President
Toyota Motor Corporate Services
of North America, Inc.
1850 M Street, NW
Washington, DC 20036

Dear Mr. Iida:

This acknowledges receipt of your Defect Information Report submitted in accordance with 49 CFR Part 573, "Defect and Noncompliance Reports."

RECALL CAMPAIGN INFORMATION

NHTSA Recall Campaign ID Number: 90V-040
(Please refer to this number in all future correspondence.)

NHTSA Contact: Mr. Jon White, Chief
Telephone: (202) 366-5227
Technical Analysis Branch

Date of Letter: February 28, 1990

Number Being Recalled: 121,389 Toyota 1983 and 1984 model Camry cars as well as 1984 model Corolla cars equipped with cruise control.

Subject: The cruise control computers of the recalled vehicles can sustain excessive thermal shock which can cause the cruise control to remain engaged upon restarting the engine if the main cruise control switch was left in the "ON" position. This condition occurs when the cruise control is shut off after sustained continuous operation followed by exposure to cold ambient temperatures.

This recall was the subject of Preliminary Evaluation PE90-021, of the Office of Defects Investigation.
ADDITIONAL INFORMATION REQUIRED

In order for us to complete our file on this matter, please provide the following additional information:

1. Identify and describe the difference between the recalled cruise control computer and the improved design computer to be installed as a remedy.

2. Identify and describe the nature of the defect, its failure modes, and the specific components which can result in the malfunction or failure. The description should include an identification of the following:
 a. "extensive continuous use . . ." of the cruise control;
 b. "extremely cold ambient temperatures;"
 c. what is meant by "excessive thermal shock to the cruise control computer;" and
 d. what component(s) can sustain the "excessive thermal shock" resulting in the malfunction of the cruise control computer.

3. Furnish a chronological summary of events which led to the discovery of the defect. The summary should include, but not be limited to, owner reports, field reports, accidents, lawsuits, warranty claim/part sales analyses, investigations or analyses, surveys, and meetings which occurred prior to the determination to conduct a safety recall.

4. Identify the actual number of affected Toyota vehicles under the National Traffic and Motor Vehicle Safety Act involved in this recall by model and model year.

5. Furnish the approximate date on which the improved cruise control computers will be available and when Toyota will begin owner notification.

Please provide this information, referencing the National Highway Traffic Safety Administration (NHTSA) identification codes in the upper right corner of the first page, to this office by April 4, 1990.

If any portion of your response is considered confidential information, include all such material in a separate enclosure marked confidential. In addition, you must submit a copy of all such confidential material directly to the Chief Counsel of NHTSA and comply with all other requirements of 49 CFR Part 512, Confidential Business Information.

QUARTERLY STATUS REPORTS

The first quarterly status report for this campaign in accordance with section 573.6 is required to be submitted within 25 working days after the close of the calendar quarter in which owner notification begins. For
instance, the current calendar quarter ends on March 31, 1990, and the first quarterly report for recalls where owner notification begins in this quarter is due by May 4, 1990.

Please inform this office when owner notification begins, and furnish a copy of the notification documents in accordance with 49 CFR Part 577, entitled "Defect and Noncompliance Notification."

Sincerely,

Michael B. Brownlee, Director
Office of Defects Investigation
Enforcement
Mr. Stephen P. Wood
Acting Chief Counsel
National Highway Traffic Safety Administration
400 Seventh Street, S.W.
Washington, D.C. 20590

RE: NEP-111jdw, 90V-040

Dear Mr. Wood:

Enclosed is a copy of Toyota's response to the letter of March 15, 1990, from the Director, Office of Defects Investigation, requesting information concerning the cruise control safety recall of 1983-1984 Toyota Camrys and 1984 Toyota Corollas. This response has been sent to the Office of Defects Investigation under separate cover.

We claim that Attachment I to the enclosed response contains confidential technical information in the form of a summary of simulation test procedures which were developed by Toyota. This technical information is proprietary and highly sensitive, and would be valuable to our competitors. Release to competitors of any material which is claimed to be confidential may result in significant competitive damage to Toyota.

Therefore, we request that Attachment I of this response, claimed to be confidential, be treated as such. Toyota appreciates your support of our claim of confidentiality with respect to the attachments so identified.

If this request and the supporting affidavit are found to be insufficient to establish Toyota's entitlement to confidential treatment, we ask that, pursuant to 49 CFR §512.4(i)(2), you
Mr. Stephen P. Wood
April 4, 1990
Page 2

afford us the opportunity to supplement this request. We understand that in accordance with §512.6(b)(1), your determination to grant or deny confidentiality will be made within 30 days and communicated to us at that time.

If we can be of further help, please contact Mr. K. Sato of my staff at (202) 775-1707.

Sincerely,

TOYOTA MOTOR CORPORATE SERVICES OF NORTH AMERICA, INC.

[Signature]

Teiji Iida
Vice President

Ti:cc
Enclosures

cc: Mr. Michael B. Brownlee
Mr. Michael A. Brownlee, Director
Office of Defects Investigation, Enforcement
National Highway Traffic Safety Administration
400 Seventh Street, S.W.
Washington, D.C. 20590

RE: NEF-111jdw
90V-040

Dear Mr. Brownlee:

This is in response to your March 15, 1990 request for additional information concerning Toyota’s NHTSA Recall Campaign Number 90V-040.

Please note that the information claimed to be confidential is contained in a separate enclosure marked "Confidential." In addition, a copy is being sent to the Chief Counsel’s office under separate cover in accordance with the directions in your letter.

The requested information is as follows:

Q.1. Identify and describe the difference between the recalled cruise control computer and the improved design computer to be installed as a remedy.

Response 1

The improved design computer incorporates a fail-safe function to prevent engine racing should the computer fail. Failure releases computer control of the throttle. Of course, the throttle can be controlled manually.
Q.2. Identify and describe the nature of the defect, its failure modes, and the specific components which can result in the malfunction or failure. The description should include an identification of the following:

a. "extensive continuous use . . ." of the cruise control;
b. "extremely cold ambient temperatures;"
c. what is meant by "excessive thermal shock to the cruise control computer;" and
d. what component(s) can sustain the "excessive thermal shock" resulting in the malfunction of the cruise control computer.

Response 2

The expansion and contraction of board and custom I.C. in the cruise control computer as a result of the self-generating heat of the custom I.C., due to continuous use of the cruise control followed by exposure to cold conditions after shutting off the cruise control leads to repeated stress to the soldered terminals of the unit. Repetition of this cycle could eventually cause the soldered terminals of the custom I.C. to develop cracks, and finally may lead to a complete separation of the soldered terminals and non-conductivity of the circuit.

The failure modes in the worst case are as follows:

o If the engine is started with the cruise control main switch "on", the engine may race until that cruise control switch (or brake switch) is deactivated. For details on temperature and number of cycles, see Attachment I.

o While driving the cruise control main switch in the "on" position (or turned "on"), engine speed may increase until that cruise control switch (or brake switch) is deactivated.

It should be noted that under all circumstances, application of the foot brake will cancel cruise control operation.
Q.3. Furnish a chronological summary of events which led to the discovery of the defect. The summary should include, but not be limited to, owner reports, field reports, accidents, lawsuits, warranty claims/part sales analyses, investigations or analyses, surveys, and meetings which occurred prior to the determination to conduct a safety recall.

Response 3

November to December, 1989 Two malfunctioning cruise control computers returned from 1984 model Canadian Camrys were investigated. For details of this investigation see the investigation report (Attachment II).

December, 1989 to January, 1990

As a part of the continuing investigation, Toyota recovered and tested other computers from Canadian vehicles produced before and after the date of manufacture of the failed computer. For test results, see Attachment III.

In addition, we simultaneously conducted the simulation test referred to in Response 2 (Attachment I).

Based on these investigations, the thermal shock computer malfunction was identified.

February, 1990

Toyota decided to initiate a safety recall campaign for 1983 and 1984 model year Camry vehicles and 1984 model year Corolla vehicles in both the U.S. and Canadian markets, all of which utilize the identical cruise control computer.

There are no accidents or lawsuits known to Toyota pertaining to these vehicles, nor are there any owner reports or field reports identifying this malfunction.
Q.4. Identify the actual number of affected Toyota vehicles under the National Traffic and Motor Vehicle Safety Act involved in this recall by model and model year.

Response 4

The actual number of affected Toyota vehicles involved in this recall by model and model year are as follows:

<table>
<thead>
<tr>
<th>Model</th>
<th>Model Year</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camry (Gasoline)</td>
<td>1983</td>
<td>30,796</td>
</tr>
<tr>
<td></td>
<td>1984</td>
<td>69,220</td>
</tr>
<tr>
<td>Camry (Diesel)</td>
<td>1984</td>
<td>3,734</td>
</tr>
<tr>
<td>Corolla</td>
<td>1983</td>
<td>17,639</td>
</tr>
</tbody>
</table>

Q.5. Furnish the approximate date on which the improved cruise control computers will be available and when Toyota will begin owner notification.

Response 5

The approximate date when Toyota will begin owner notification is April 10, 1990, and simultaneously the improved cruise control computers will be available.

Sincerely,

[Signature]

Teiji Iida
Vice President
AFFIDAVIT IN SUPPORT OF
REQUEST FOR CONFIDENTIALITY

I, Teiji Iida, being duly sworn, depose and say:

(1) That I am Vice President, Toyota Motor Corporate Services of North America, Inc. ("TMCS"), and that I am authorized by Toyota Motor Corporation (Japan) ("TMC") to execute documents on its behalf.

(2) That the information contained in Attachment I to our response to the March 15, 1990 NHTSA request regarding the cruise control safety recall of Toyota Camrys and Corollas is confidential and proprietary data and is being submitted with the claim that it is entitled to confidential treatment and protected from disclosure under 5 U.S.C. 55e (b)(4) and 15 U.S.C. 2005 (d)(1).

(3) That I have personally inquired of the responsible TMC personnel who have authority in the normal course of business to release the information for which a claim for confidentiality has been made to ascertain whether such information has ever been released outside TMC and TMCS.

(4) That based on such inquiries to the best of my knowledge the information for which TMC has claimed confidential treatment has never been released or become available outside TMC and TMCS.

(5) That I make no representations beyond those contained in this affidavit and in particular I make no representations as to whether this information may become available outside TMC and TMCS, because of unauthorized or inadvertent disclosure; and

(6) That the information contained in the enumerated paragraphs of this affidavit is true and accurate to the best of my information, knowledge and belief.

Teiji Iida
Vice President

DISTRICT OF COLUMBIA: ee

Signed in the presence of me, Kathryn E. Goedtel, a Notary Public in and for the District of Columbia, this 6th day of April, 1991.

Kathryn E. Goedtel

Notary Public
Attachment II
1984 Camry Cruise Control Computer Investigation Report

1. Vehicle Data
 (1) Yves Arcouet Case
 Model : 1984 Toyota Camry
 VIN : JT2SV16E9E0077206
 Date of Manufacture : September, 1983
 Date of Purchase : July, 1987 (Current Owner)
 Date of Incident : unknown
 Odometer Reading : 152,191 km
 Owner Complaint : Cruise control caused vehicle to accelerate to full throttle.
 Recovered Part : Cruise Control Computer
 (Part Number : 88240-32021)

 (2) Gilbert Pinet Case
 Model : 1984 Toyota Camry
 VIN : JT2SV16H3E0063610
 Date of Manufacture : August, 1983
 Date of Purchase : unknown
 Date of Incident : unknown
 Odometer Reading : 149,180km
 Owner Complaint : Cruise activates to full throttle when main switch is on.
 Recovered Part : Cruise Control Computer
 (Part Number : 88240-32021)

2. Investigation Items
 (1) Appearance observation of the computer assembly.
 (2) Function check
 (3) Voltage check
 (4) Soldering condition observation
 (5) Coating material observation
3. Investigation Results
(1) Appearance observation of the computer assembly

No abnormality was found on the outside or inside of the case for both computers.

Photo 1 Connector Side
Yves Arcouet Case

Photo 2 Bracket Side
Yves Arcouet Case

Gilbert Pinet Case
(2) Function Check

Since an actual vehicle was not available, we checked the cruise control computer function with the bench checker. When the MAIN switch was ON under room temperature, both computers did not perform all functions properly. This failure mode indicated a condition that would cause the actuator to continuously pull the throttle.

See Table 1 on next page.
(3) Voltage Check

(3)-1 Voltage check at connector terminal

Table 2 and 3 show the voltage measuring results at each connector terminal, applying 12V to the power supply terminal. With the ignition switch ON and the cruise control MAIN switch ON, the voltage observed at control valve and release valve terminal was such that it would cause the actuator to always activate.

Table 2 Voltage at the connector terminals (Yves Arcouet Case)

<table>
<thead>
<tr>
<th>No.</th>
<th>Terminals</th>
<th>Voltage (V)</th>
<th>Judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>failed part</td>
<td>normal part</td>
</tr>
<tr>
<td>1</td>
<td>Release Valve</td>
<td>9.7</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>Gnd</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>Control Valve</td>
<td>10.1</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>SET/COAST S/W</td>
<td>11.2</td>
<td>11.2</td>
</tr>
<tr>
<td>5</td>
<td>T/M Control Relay</td>
<td>12.0</td>
<td>12.0</td>
</tr>
<tr>
<td>6</td>
<td>Speed Sensor</td>
<td>10.9</td>
<td>10.1</td>
</tr>
<tr>
<td>7</td>
<td>Main S/W</td>
<td>12.0</td>
<td>12.0</td>
</tr>
<tr>
<td>8</td>
<td>Stop Lamp S/W</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>Stop Lamp Fuse</td>
<td>12.0</td>
<td>12.0</td>
</tr>
<tr>
<td>10</td>
<td>Gnd</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>11</td>
<td>Neutral Start S/W</td>
<td>10.7</td>
<td>10.9</td>
</tr>
<tr>
<td>12</td>
<td>Parking Brake S/W</td>
<td>12.0</td>
<td>12.0</td>
</tr>
<tr>
<td>13</td>
<td>RESUME/ACCEL S/W</td>
<td>11.2</td>
<td>11.2</td>
</tr>
</tbody>
</table>

Measuring condition

$+B = 12.00\; V$

Ignition S/W = ON
MAIN S/W = ON
SPEED = 0 Km/h

All data in this report was obtained under the same measuring conditions.
Table 3 Voltage at the connector terminals (Gilbert Pinet Case)

<table>
<thead>
<tr>
<th>No.</th>
<th>Terminals</th>
<th>Voltage (V)</th>
<th></th>
<th>Judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>failed part</td>
<td>normal part</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Release Valve</td>
<td>9.6</td>
<td>0.0</td>
<td>NG</td>
</tr>
<tr>
<td>2</td>
<td>Gnd</td>
<td>0.0</td>
<td>0.0</td>
<td>OK</td>
</tr>
<tr>
<td>3</td>
<td>Control Valve</td>
<td>10.1</td>
<td>0.0</td>
<td>NG</td>
</tr>
<tr>
<td>4</td>
<td>SET/COAST S/W</td>
<td>11.2</td>
<td>11.2</td>
<td>OK</td>
</tr>
<tr>
<td>5</td>
<td>T/M Control Relay</td>
<td>12.0</td>
<td>12.0</td>
<td>OK</td>
</tr>
<tr>
<td>6</td>
<td>Speed Sensor</td>
<td>10.9</td>
<td>10.1</td>
<td>OK</td>
</tr>
<tr>
<td>7</td>
<td>Main S/W</td>
<td>12.0</td>
<td>12.0</td>
<td>OK</td>
</tr>
<tr>
<td>8</td>
<td>Stop Lamp S/W</td>
<td>0.0</td>
<td>0.0</td>
<td>OK</td>
</tr>
<tr>
<td>9</td>
<td>Stop Lamp Fuse</td>
<td>10.0</td>
<td>12.0</td>
<td>OK</td>
</tr>
<tr>
<td>10</td>
<td>Gnd</td>
<td>0.0</td>
<td>0.0</td>
<td>OK</td>
</tr>
<tr>
<td>11</td>
<td>Neutral Start S/W</td>
<td>10.7</td>
<td>10.9</td>
<td>OK</td>
</tr>
<tr>
<td>12</td>
<td>Parking Brake S/W</td>
<td>12.0</td>
<td>12.0</td>
<td>OK</td>
</tr>
</tbody>
</table>

Measuring condition

+ B = 12.00 V
Ignition S/W = ON
MAIN S/W = ON
SPEED = 0 Km/h

All data in this report was obtained under the same measuring conditions.

Fig 2 Connector terminal
Voltage check at transistor and custom I.C. terminals

After removing the printed circuit board from the casing, the voltage at the transistor and custom I.C. terminals was measured for both computers by applying 12V to the power supply terminal. Measuring points are included in Fig 3 (circuit diagram) and are both sides (one is the soldering side and the other is the elements side) of the printed circuit board at each connector terminal. Voltage measuring results are shown in Table 4 through 7.

1. Voltage check on the soldering side (both computers)

The transistor TR1 (for control valve) and TR2 (for the release valve), which operate the actuator, were both activated.

Although the voltage at the No.1 and No.2 terminal of the custom I.C., which are terminals that receive the control signal from the microprocessor, were normal, there existed a voltage level difference between the failed part and the normal part. The voltage at the No.15 and No.16 terminals, which are terminals that output the signal to the transistors, was abnormal resulting in continuous of activation of these transistors.

The voltage at the No.12 and No.13 terminal of the custom I.C., which are terminals for the power source and the voltage of the transistor TR4 (for the power source control) were abnormal.
Fig 3 Cruise control computer circuit diagram
2. Voltage check on the elements side (Both computers)

The voltage level at the No. 3 terminal (for power source Vcc) on the element side was different from that on the soldering side. This means that the open circuit mode occurred in the soldering portion on the No. 3 terminal of the custom I.C.

To confirm whether the cause of this failure mode is the open circuit on the No. 3 terminal or not, we measured the voltage level at each terminal by connecting the copper clad (A) and the No. 3 terminal (B) using another wire as shown in Fig. 4.

Consequently, the voltage level at each terminal was the same as that of the normal part and the computer performed all functions properly. Test results are included in table 4 through 7.

![Diagram of No.3 Terminal Repair](image)
<table>
<thead>
<tr>
<th>No.</th>
<th>Terminals</th>
<th>Voltage (V)</th>
<th>Failed Part</th>
<th>Normal Part</th>
<th>Judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>As Received</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soldering Side</td>
<td>Elements Side</td>
<td>After Repair No.3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>TR1 *</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Base</td>
<td>10.2</td>
<td>10.2</td>
<td>11.2</td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td>Collector</td>
<td>10.1</td>
<td>10.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Emitter</td>
<td>10.9</td>
<td>10.9</td>
<td>11.3</td>
<td>11.3</td>
</tr>
<tr>
<td>2</td>
<td>TR2 **</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Base</td>
<td>10.2</td>
<td>10.2</td>
<td>11.2</td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td>Collector</td>
<td>9.7</td>
<td>9.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Emitter</td>
<td>10.9</td>
<td>10.9</td>
<td>11.3</td>
<td>11.3</td>
</tr>
<tr>
<td>3</td>
<td>TR4 ***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Base</td>
<td>6.8</td>
<td>6.8</td>
<td>5.6</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td>Collector</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Emitter</td>
<td>7.5</td>
<td>7.5</td>
<td>6.2</td>
<td>6.2</td>
</tr>
</tbody>
</table>

* TR1 : Control Valve Drive Transistor
** TR2 : Release Valve Drive Transistor
*** TR4 : Vss Control Transistor

<table>
<thead>
<tr>
<th>No.</th>
<th>Terminals</th>
<th>Voltage (V)</th>
<th>Failed Part</th>
<th>Normal Part</th>
<th>Judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>As Received</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soldering Side</td>
<td>Elements Side</td>
<td>After Repair No.3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>IN - A</td>
<td>10.1</td>
<td>10.1</td>
<td>8.2</td>
<td>8.2</td>
</tr>
<tr>
<td>2</td>
<td>IN - B</td>
<td>10.2</td>
<td>10.2</td>
<td>11.2</td>
<td>11.3</td>
</tr>
<tr>
<td>3</td>
<td>Vcc</td>
<td>11.2</td>
<td>9.3</td>
<td>11.2</td>
<td>11.3</td>
</tr>
<tr>
<td>4</td>
<td>CD - C</td>
<td>11.2</td>
<td>11.2</td>
<td>11.2</td>
<td>11.2</td>
</tr>
<tr>
<td>5</td>
<td>CD - D</td>
<td>11.2</td>
<td>11.2</td>
<td>11.2</td>
<td>11.2</td>
</tr>
<tr>
<td>6</td>
<td>CD - E</td>
<td>7.4</td>
<td>7.4</td>
<td>6.1</td>
<td>6.1</td>
</tr>
<tr>
<td>7</td>
<td>CD - J</td>
<td>10.2</td>
<td>10.2</td>
<td>10.6</td>
<td>10.7</td>
</tr>
<tr>
<td>8</td>
<td>CD - F</td>
<td>11.0</td>
<td>11.0</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>9</td>
<td>Not used</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>CD - H</td>
<td>9.4</td>
<td>9.4</td>
<td>11.0</td>
<td>11.0</td>
</tr>
<tr>
<td>11</td>
<td>Not used</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Vss</td>
<td>7.5</td>
<td>7.5</td>
<td>6.2</td>
<td>6.2</td>
</tr>
<tr>
<td>13</td>
<td>Vb</td>
<td>8.1</td>
<td>8.1</td>
<td>6.9</td>
<td>6.9</td>
</tr>
<tr>
<td>14</td>
<td>Vee</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>15</td>
<td>OUT - B</td>
<td>10.2</td>
<td>10.2</td>
<td>11.2</td>
<td>11.2</td>
</tr>
<tr>
<td>16</td>
<td>OUT - A</td>
<td>10.2</td>
<td>10.2</td>
<td>11.2</td>
<td>11.2</td>
</tr>
</tbody>
</table>
Table 6 Voltage at the transistor terminals (Gilbert Pinet Case)

<table>
<thead>
<tr>
<th>No.</th>
<th>Terminals</th>
<th>Voltage (V)</th>
<th>Failed Part</th>
<th>Normal Part</th>
<th>Judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>As Received</td>
<td>After Repair</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soldering Side</td>
<td>Elements Side</td>
<td>No.3</td>
</tr>
<tr>
<td>1</td>
<td>TR1 *</td>
<td>Base</td>
<td>10.2</td>
<td>10.2</td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Collector</td>
<td>10.1</td>
<td>10.1</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Emitter</td>
<td>10.9</td>
<td>10.9</td>
<td>11.3</td>
</tr>
<tr>
<td>2</td>
<td>TR2 **</td>
<td>Base</td>
<td>10.2</td>
<td>10.2</td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Collector</td>
<td>9.8</td>
<td>9.8</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Emitter</td>
<td>10.9</td>
<td>10.9</td>
<td>11.3</td>
</tr>
<tr>
<td>3</td>
<td>TR4 ***</td>
<td>Base</td>
<td>6.8</td>
<td>6.8</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Collector</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Emitter</td>
<td>7.5</td>
<td>7.5</td>
<td>6.2</td>
</tr>
</tbody>
</table>

* TR1 : Control Valve Drive Transistor
** TR2 : Release Valve Drive Transistor
*** TR4 : Vss Control Transistor

Table 7 Voltage at the custom I.C. terminals (Gilbert Pinet Case)

<table>
<thead>
<tr>
<th>No.</th>
<th>Terminals</th>
<th>Voltage (V)</th>
<th>Failed Part</th>
<th>Normal Part</th>
<th>Judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>As Received</td>
<td>After Repair</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soldering Side</td>
<td>Elements Side</td>
<td>No.3</td>
</tr>
<tr>
<td>1</td>
<td>IN - A</td>
<td>10.1</td>
<td>10.1</td>
<td>8.3</td>
<td>8.3</td>
</tr>
<tr>
<td>2</td>
<td>IN - B</td>
<td>10.2</td>
<td>10.2</td>
<td>11.2</td>
<td>11.3</td>
</tr>
<tr>
<td>3</td>
<td>Vcc</td>
<td>11.2</td>
<td>9.2</td>
<td>11.2</td>
<td>11.3</td>
</tr>
<tr>
<td>4</td>
<td>CD - C</td>
<td>11.2</td>
<td>11.2</td>
<td>11.1</td>
<td>11.2</td>
</tr>
<tr>
<td>5</td>
<td>CD - D</td>
<td>11.1</td>
<td>11.1</td>
<td>11.1</td>
<td>11.2</td>
</tr>
<tr>
<td>6</td>
<td>CD - E</td>
<td>7.4</td>
<td>7.4</td>
<td>6.1</td>
<td>6.1</td>
</tr>
<tr>
<td>7</td>
<td>CD - J</td>
<td>10.2</td>
<td>10.2</td>
<td>10.7</td>
<td>10.7</td>
</tr>
<tr>
<td>8</td>
<td>CD - P</td>
<td>11.0</td>
<td>11.0</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>9</td>
<td>Not used</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>CD - H</td>
<td>9.3</td>
<td>9.3</td>
<td>11.0</td>
<td>11.0</td>
</tr>
<tr>
<td>11</td>
<td>Not used</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Vss</td>
<td>7.5</td>
<td>7.5</td>
<td>6.2</td>
<td>6.2</td>
</tr>
<tr>
<td>13</td>
<td>Vh</td>
<td>8.1</td>
<td>8.1</td>
<td>6.9</td>
<td>6.9</td>
</tr>
<tr>
<td>14</td>
<td>Vcc</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>15</td>
<td>OUT - B</td>
<td>10.2</td>
<td>10.2</td>
<td>11.2</td>
<td>11.2</td>
</tr>
<tr>
<td>16</td>
<td>OUT - A</td>
<td>10.2</td>
<td>10.2</td>
<td>11.2</td>
<td>11.2</td>
</tr>
<tr>
<td>Checked Function</td>
<td>Explanation</td>
<td>Results</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. SET</td>
<td>The desired speed is set by SET switch ON.</td>
<td>NG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. COAST</td>
<td>While the SET switch is held ON, the vehicle speed is decelerated. When the switch is released, constant-speed-control starts at that speed.</td>
<td>NG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. CANCEL</td>
<td>The preset speed is cancelled by depressing the brake pedal.</td>
<td>NG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. CANCEL</td>
<td>If the shift lever is positioned "N" range, the preset speed is cancelled.</td>
<td>NG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. CANCEL</td>
<td>The preset speed is cancelled by setting the parking brake.</td>
<td>NG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. RESUME</td>
<td>After the preset speed is cancelled when the RESUME switch is turned ON, the vehicle resumes the set speed prior to cancellation.</td>
<td>NG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. ACCEL</td>
<td>If the vehicle is running under control of this system, with the RESUME switch being held on, the vehicle speed is accelerated. When the switch is released, constant-speed-control starts at the speed.</td>
<td>NG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. LOW-SPEED LIMITER</td>
<td>If the vehicle slows down to less than the low speed limit, the preset speed is automatically cancelled and the stored speed is cleared.</td>
<td>NG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. HIGH-SPEED LIMITER</td>
<td>Prohibiting the system from setting the speed when the vehicle speed is over the high-speed-limit.</td>
<td>NG</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Soldering Condition Observation

(1) Appearance observation of the soldering portion

With microscopic observation, cracks were found on the soldered terminals of the custom I.C.

Photo 4 shows the No.3 terminal. Cracks were found around the soldered terminal.

Cracks were also found on the No.2, No.4 and No.3 terminals for Yves Arcovet case and on the No.2 and No.14 for Gilbert Pinet case. Photo 5 shows the No.8 terminal for Yves Arcovet case and the No.14 terminal for Gilbert Pinet case.

Photo 4 No.3 Terminal of the Custom I.C.

Yves Arcovet Case Gilbert Pinet Case
Photo 5 No.8 and No.14 Terminals of the Custom I.C.

Yves Arcouet Case
(No.8 Terminal)

Gilbert Pinet Case
(No.14 Terminal)
(2) Cross section observation of the soldering portion

With microscopic observation of the soldering portion on the No.3 terminal of custom I.C., it was found that the solder was fractured along the terminal as shown in Photo 6 and 7.

Photo 6 Cross Section Cut-Away of No.3 Terminal
(Yves Arcouet Case)

Magnified Upper Right Area
Photo 7 Cross Section Cut-Away of the No.3 Terminal
(Gilbert Pinet Case)

Magnified Upper Right Area
5. Coating Adhesion around the Custom I.C.

No abnormality was found for the coating adhesion condition as shown in Photo 8.

Photo 8 Coating Adhesion around the Custom I.C.
Yves Arcouet Case Gilbert Pinet Case

6. Conclusion
Based on the aforementioned results, we have concluded that the failure mode for both computers was caused by the open circuit due to a solder fracture on the No.3 terminal of the custom I.C.
Attachment III
Investigation Results of Camry Cruise Control Computers Recovered from Canada Market

<table>
<thead>
<tr>
<th>No.</th>
<th>Model Type</th>
<th>VIN</th>
<th>Mileage (km)</th>
<th>Date of Registration</th>
<th>Date of Manufacture</th>
<th>Lot No. of Computer</th>
<th>Function Check</th>
<th>Observation of Soldered Terminals</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SY4L-VEPEX</td>
<td>JT2SV16E0D0155678</td>
<td>192,802</td>
<td>83, 4.27</td>
<td>83. 2.22</td>
<td>80217X</td>
<td>O.K</td>
<td>No abnormalities</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SY4L-VEPEX</td>
<td>JT2SV16E2D021719</td>
<td>93,902</td>
<td>83, 4.20</td>
<td>83. 5.17</td>
<td>80210X</td>
<td>O.K</td>
<td>No abnormalities</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SY4L-VEPEX</td>
<td>JTZSY16R7D0356564</td>
<td>118,369</td>
<td>83, 3.10</td>
<td>83. 6.28</td>
<td>80622X</td>
<td>O.K</td>
<td>Microscopic cracks on No.1,2 and 16 terminals</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SY4L-VEPEX</td>
<td>JTZSY16R5D0156060</td>
<td>127,021</td>
<td>84, 3.24</td>
<td>84. 7.12</td>
<td>80704X</td>
<td>O.K</td>
<td>No abnormalities</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>SY4L-VEPEX</td>
<td>JTZSY16R5D0968551</td>
<td>111,471</td>
<td>83, 2.28</td>
<td>83. 7.26</td>
<td>80214X</td>
<td>O.K</td>
<td>Cracks on No.7, 4 and 5 terminals</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>SY4L-VEPEX</td>
<td>JTZSY16R5E0169233</td>
<td>150,999</td>
<td>83, 11.8</td>
<td>83. 9.12</td>
<td>80625X</td>
<td>O.K</td>
<td>No abnormalities</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>SY4L-VEPEX</td>
<td>JTZSY16R5D077296</td>
<td>177,699</td>
<td>83, 12.16</td>
<td>83. 10.13</td>
<td>80215X</td>
<td>O.K</td>
<td>No abnormalities</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>SY4L-VEPEX</td>
<td>JTZSY16R5E0988498</td>
<td>131,338</td>
<td>83, 12.20</td>
<td>83. 11.16</td>
<td>80216X</td>
<td>O.K</td>
<td>No abnormalities</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>SY4L-VEPEX</td>
<td>JTZSY16R5E0156551</td>
<td>77,941</td>
<td>84. 3.30</td>
<td>84. 2.7</td>
<td>90202X</td>
<td>O.K</td>
<td>No abnormalities</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>SY4L-VEPEX</td>
<td>JTZSY16R5E0138930</td>
<td>159,971</td>
<td>84. 5.9</td>
<td>84. 3.7</td>
<td>90227X</td>
<td>O.K</td>
<td>Cracks on No.12 and 14 terminals</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>SY4L-VEPEX</td>
<td>JTZSY16R6E0125025</td>
<td>119,872</td>
<td>84. 5.22</td>
<td>84. 3.28</td>
<td>90223X</td>
<td>O.K</td>
<td>No abnormalities</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>SY4L-VEPEX</td>
<td>JTZSY16R5E0127536</td>
<td>101,055</td>
<td>84. 5.18</td>
<td>84. 4.2</td>
<td>90327X</td>
<td>O.K</td>
<td>Small cracks on No.1,2,3 and 4 terminals</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>SY4L-VEPEX</td>
<td>JTZSY16R6D0138060</td>
<td>109,220</td>
<td>84. 6.16</td>
<td>84. 4.23</td>
<td>90421X</td>
<td>O.K</td>
<td>No abnormalities</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>SY4L-VEPEX</td>
<td>JTZSY16R7D0142701</td>
<td>182,596</td>
<td>84. 6.19</td>
<td>84. 5.9</td>
<td>90555X</td>
<td>O.K</td>
<td>No abnormalities</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>SY4L-VEPEX</td>
<td>JTZSY16R8D0148990</td>
<td>78,613</td>
<td>84. 6.20</td>
<td>84. 5.10</td>
<td>90509X</td>
<td>O.K</td>
<td>No abnormalities</td>
<td></td>
</tr>
</tbody>
</table>
Mr. Teiji Iida
Vice President
Toyota Motor Corporation Services
of North America, Inc.
1850 N Street, NW
Washington, DC 20036

Re: NEP-11146, 90V-049

Dear Mr. Iida:

We have received your letter dated April 4, 1990, in which you request confidentiality treatment for certain documents which contain technical information in the form of a summary of simulation test procedures developed by Toyota. After careful review, we have concluded that the information you have identified is entitled to confidential treatment because the public release of this information could cause substantial competitive harm to your company.

This grant of confidentiality is subject to certain conditions since it was submitted pursuant to a safety defect investigation. It may be disclosed under the authority of 15 U.S.C. §5710(a)(7)(b) and 49 C.F.R. §512.9, upon a finding by this Agency that such information is necessary to affect the purposes of the National Traffic and Motor Vehicle Safety Act. In addition, the information may also be disclosed under 49 C.F.R. §512.8, based upon newly discovered or changed facts, and you must inform the National Highway Traffic Safety Administration of any changed circumstances which may affect the protection of the information (49 C.F.R. §512.4(b)). Prior to the release of information under 49 C.F.R. §512.8 or §512.9, you would be notified in accordance with the procedure established by our regulations.

Sincerely,

[Signature]

Kathleen DeMater
Assistant Chief Counsel
for General Law
TO: ALL REGION/PRIVATE DISTRIBUTOR GENERAL MANAGERS

SUBJECT: SPECIAL SERVICE CAMPAIGN - L01

Toyota will initiate a special service campaign to replace the factory installed cruise control computer with an improved design on certain 1983 and 1984 Toyota Camrys and 1984 Corollas.

The following vital information is provided to inform you and your staff of the campaign schedule and your degree of involvement required:

1. Dealer, Owner Notification

 o Dealer notification package mailing date: March 28, 1990
 (copy attached)

 o Owner notification letter mailing date: April 6, 1990

2. Number of Vehicles Involved in Your Region

 o Please refer to the enclosed SSC L01 summary report, by region/district/dealer. This list indicates the number of vehicles involved in this campaign in your region.

 o This list may be utilized by your staff for future follow up.

Please review this entire special service campaign package with your staff and make sure that all appropriate personnel are completely familiar with its contents so that they may provide the necessary support to your dealers and maximize our combined customer satisfaction efforts.

Your cooperation in this matter would be greatly appreciated.

Sincerely,

Richard J. Gallio
Vice President, Service

Enclosures

cc: Reg./Pvt. Dist. Service Mgrs. H. Bracken M. Imai
 Reg./Pvt. Dist. C.R. Mgrs. T. Fujita R. McCurry
 Reg./Pvt. Dist. Parts Mgrs. T. Kawamura A. Wagner
 All Service Dept. Mgrs. D. West
TO: ALL TOYOTA DEALERS AND SERVICE MANAGERS

SUBJECT: SPECIAL SERVICE CAMPAIGN - LO1

Toyota will initiate a special service campaign to replace the factory installed cruise control computer with an improved design on certain 1983 & 1984 Toyota Camrys and 1984 Corollas.

Shutting off the cruise control after extensive continuous use followed by exposure to extremely cold ambient conditions may result in excessive thermal shock to the cruise control computer. Repetition of this cycle may lead to a cruise control computer malfunction.

You are requested, using the following information, to install the improved design cruise control computer on the vehicles involved in this campaign, including all vehicles currently in your stock.

Note: You will be sent SSC notifications with your dealer's name and address for vehicles which, according to our record, you have in stock. If any vehicles in your stock involved in this campaign have been sold to an ultimate customer prior to receipt of this notification, please contact this known customer and perform the necessary repairs.

1. Owner notification letter mailing date

 April 6, 1990 (copy attached)

2. Identification of involved vehicles:

<table>
<thead>
<tr>
<th>Model</th>
<th>Model Year</th>
<th>VDS</th>
<th>VIN</th>
<th>Production Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toyota</td>
<td>1984</td>
<td>AE82E</td>
<td>3000001 - 3129702</td>
<td>April 1983 - August 1984</td>
</tr>
<tr>
<td>Corolla</td>
<td></td>
<td>AE82L</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AE83E</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AE83L</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AE85S</td>
<td>0000001 - 0089798</td>
<td>March 1983 - August 1984</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AE86C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AE86S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camry</td>
<td>1984</td>
<td>SV16E</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SV12H</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SV16H</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1984</td>
<td>CV12E</td>
<td>0000001 - 0203194</td>
<td>August 1983 - August 1984</td>
</tr>
</tbody>
</table>

Note: Although the involved vehicles are within the above VIN ranges, not all vehicles in these ranges were imported into the U.S.
The enclosed special service campaign dealer/owner list (SSC LO1) indicates each customer's name, address and vehicle identification number that are involved in this campaign in your area. You may also utilize this for your future follow-up system.

3. Repair procedures
 Refer to the attached Technical Instructions.

4. Parts ordering
 As with all campaigns, necessary parts must be ordered from your facing Parts Distribution Center.

 In order to avoid excessive parts orders and maintain adequate parts inventory, it is highly recommended that your initial part order of the cruise control computer does not exceed 10% of the number of the vehicles indicated on the enclosed special service campaign dealer/owner list (SSC LO1).

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Veh. Application</th>
<th>Quantity per Ven.</th>
</tr>
</thead>
<tbody>
<tr>
<td>88240-12027</td>
<td>Cruise Control Computer</td>
<td>Camry</td>
<td>1</td>
</tr>
<tr>
<td>88240-12011</td>
<td>Cruise Control Computer</td>
<td>Corolla Sport</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(SR5 Coupe &</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Dr. Liftback</td>
<td></td>
</tr>
<tr>
<td>88240-12041</td>
<td>Cruise Control Computer</td>
<td>Corolla Sedan</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Sedan & 5 Dr.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liftback)</td>
<td></td>
</tr>
</tbody>
</table>

5. Reimbursement procedures
 Submit special service campaign claims following the procedures described in the Toyota Warranty Policy & Procedures Manual.

 The operation codes to be used for this campaign is listed below.

<table>
<thead>
<tr>
<th>SSC #</th>
<th>Op. Code</th>
<th>Description</th>
<th>Applicable Model</th>
<th>Flat Rate Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO1</td>
<td>05C101</td>
<td>Replace cruise control computer and verify function</td>
<td>Corolla</td>
<td>1.1</td>
</tr>
<tr>
<td>LO1</td>
<td>05C102</td>
<td>Replace cruise control computer and verify function</td>
<td>Camry</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Note: The above operation codes includes 0.1 flat rate hour for administrative expenses.

Please review this entire package with your Service and Parts staff to familiarize them with the proper step-by-step procedure and implement this special service campaign to ensure customer satisfaction.

Thank you for your cooperation.

Sincerely,

Richard J. Gallio
Vice President, Service
Note: Before starting any work on the vehicle, install protective covers on the front seats.

1. Necessary Parts

<table>
<thead>
<tr>
<th>Part Name</th>
<th>Part No.</th>
<th>Applicable Model</th>
<th>Quantity /Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Assy.</td>
<td>88240-32022</td>
<td>Camry</td>
<td>1</td>
</tr>
<tr>
<td>Speed Control</td>
<td>"-12011</td>
<td>Corolla Sport</td>
<td>1</td>
</tr>
<tr>
<td>"-12041</td>
<td>Corolla Sedan</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

2. Location of the cruise control computer assembly

1983 & 1984 Camry

1984 Corolla (SR5 Sport Coupe & 3 Dr Liftback)
1984 Corolla (Sedan & 5 Dr Liftback)
3. **Cruise Control Computer Replacement**

 For 1993 & 1984 Camry

1) Turn the ignition switch to the lock position.

2) Remove the right front scuff plate.

3) Remove the right cowl side trim.

4) Remove the seat belt warning relay mounting screw in order to obtain enough space for cruise control computer removal.

 Caution: Do not disconnect the wiring connector from the relay.

5) Replace the cruise control computer with an improved one.

 (a) Disconnect the wiring connector from the computer.

 (b) Remove two mounting bolts.

 (c) Remove the cruise control computer.

 (d) Install a new computer and connect the wiring connector.

6) Reinstall the seat belt warning relay mounting screw.

7) Install the right cowl side trim.

8) Install the right front scuff plate.
1984 Corolla (Sport Coupe & 3 Dr Liftback Models)

1) Turn the ignition switch to the lock position.

2) Remove the left scuff plate.

3) Remove the left cowl side trim.

4) Remove the No. 1 speaker panel.

5) Remove the lower finish panel with speaker.

6) Replace the cruise control computer with improved one.
 (a) Disconnect the connector from the computer.
 (b) Remove mounting bolt.
 (c) Using a small screw driver, release the clip behind the computer from bracket.
 (d) Remove the computer.
 (e) Install the improved computer and connect the wiring connector.
 (f) Install the clip and mounting bolt.

7) Install the lower finish panel.

8) Install the No. 1 speaker panel.

9) Install the left cowl side trim.

10) Install the left scuff plate.
1984 Corolla (Sedan & 5 Dr Liftback Models)

1) Turn the ignition switch to the lock position.

2) Remove the right scuff plate.

3) Remove the right cowl side trim.

4) Remove the No. 2 speaker panel.

5) Remove the speaker bracket with speaker.

6) Replace the cruise control computer with an improved one.
 (a) Disconnect the connector from the computer.
 (b) Remove mounting bolt.
 (c) Using a small screwdriver, release the clip behind the computer.
 (d) Remove the computer.
 (e) Install the improved computer and connect the wiring connector.
 (f) Install clip and mounting bolt.

7) Install the speaker bracket with speaker.

8) Install the No. 2 speaker panel.

9) Install the right cowl side trim.

10) Install the right scuff plate.
4. Inspection

1) Make sure that all the removed parts have been reinstalled properly.

2) Check the cruise control system.

Cruise Control Switches

For 1983 & 1984 Camry Models

For 1984 Corolla Models

a) Main switch function
 - Turn the ignition switch on.
 - Check that the indicator light comes on when the main switch is turned on and goes off when the main switch is turned off.

b) Control switch function
 - Check that the "SET (COAST)" and "ACCEL (RESUME)" switches function smoothly, and the switches return to their original positions when released.

c) Cruise control system function (described basically on Camry).
 Drive vehicle and check for the following:

Setting at a desired speed

- Bring the vehicle to a desired speed, move the control lever downward in the "SET (COAST)" direction (AE@#: push the "SET (COAST)" switch in) and release it. Then make sure that the vehicle has been set at that speed.

Resetting at a faster speed

- After setting at a desired speed, move the control lever toward the "ACCEL (RESUME)" side and hold it. Release the lever when the desired speed is attained. Check that the vehicle will gradually gain speed while the lever is held.

Resetting at a slower speed

- After setting at desired speed, move the control lever toward the "COAST (SET)" direction (AE@#: push the "COAST (SET)" switch in) and hold it. Release the lever when the desired speed is attained. Check that the vehicle speed will gradually decrease while the lever is held.
Cancelling the preset speed

- Check that the preset speed is cancelled by any of the following functions:
 - Depressing the brake pedal
 - Depressing the clutch pedal (manual transmission).
 - Placing the selector lever in "N" (automatic transmission).
 - Slightly pulling on the parking brake lever
 - Turning off the cruise control main switch

Resuming the preset speed

- Move the control lever toward the "RESUME (ACCEL)" direction. The vehicle should resume the speed set prior to cancellation unless the vehicle has slowed to less than 25 mph (40 km/h).

5. Completion Label

1. After completing repair and before returning vehicle to the customer a SSC completion label that is enclosed in the owner's letter must be affixed to the firewall, make sure that the surface is clean and dry to ensure proper adhesion of the label.

2. The label is to be filled out as follows:

 Write in SSC # L01
 Write in date of repair
 Write in your dealer code

3. Additional SSC completion labels (P/N 00410-01917) may be ordered through the non-parts system on a 1450 order form or through the TDN system.
TOYOTA

TOYOTA MOTOR SALES, U.S.A., INC.

April 1990

Dear Toyota Customer,

This notice is sent to you in accordance with the requirements of the National Traffic and Motor Vehicle Safety Act.

Toyota has determined that a defect which relates to motor vehicle safety exists on certain 1983 & 1984 Toyota Camrys and 1984 Corollas.

What is the problem?

If the cruise control computer is subjected to excessive temperature variations repeatedly for a long time, the following symptoms may result:

- If the engine is started with the cruise control main switch "on", the engine may race.
- If the cruise control main switch is placed in the "on" position while driving, engine speed may increase.

Should you experience these conditions, the unanticipated engine and/or vehicle speed increase may momentarily impair your control of the vehicle and a crash can occur. Until your vehicle is repaired you can avoid the possibility of experiencing any of these conditions by leaving the cruise control main switch in the "off" position.

What will Toyota do?

- Any Toyota dealer will replace the cruise control computer with an improved one.
- Contact any Toyota dealer and make an appointment to have the cruise control computer on your vehicle replaced at no cost to you. The work will take approximately one hour to perform, however, administrative procedures at the dealership may require that your vehicle be made available for a longer period of time.
- If you no longer own the vehicle, please indicate so on the enclosed postage paid form, providing us with the name and address of the new owner.

What if you have other questions?

If you are in the continental United States, please contact your local Toyota dealer or:

Toyota Customer Assistance Center
1-800-331-4331

If you are in the non-continental United States, please see the list of contacts on the last page of this communication.

- If your dealer or Toyota fail or is unable to respond within a reasonable period of time, you may contact:
 Administrator
 National Highway Traffic Safety Administration
 400 Seventh Street S.W.
 Washington, D.C. 20590
 or call their toll free Auto Safety Hotline:

We have sent this notice in the interest of your safety and continued satisfaction with our products and we sincerely regret any inconvenience this may have caused you.

Thank you for driving a Toyota.

Sincerely,

TOYOTA MOTOR SALES, U.S.A., INC.
CORPORATE SERVICE DEPARTMENT
MAR 15 1990

CERTIFIED MAIL
RETURN RECEIPT REQUESTED

Mr. Teiji Iida
Vice President
Toyota Motor Corporate Services
of North America, Inc.
1800 N Street, NW
Washington, DC 20036

Dear Mr. Iida:

This acknowledges receipt of your Defect Information Report submitted in accordance with 49 CFR Part 573, "Defect and Noncompliance Reports."

RECALL CAMPAIGN INFORMATION

NHTSA Recall Campaign ID Number: 90V-040
(Please refer to this number in all future correspondence.)

NHTSA Contact: Mr. Jon White, Chief Telephone: (202) 366-5227
Technical Analysis Branch

Date of Letter: February 28, 1990

Number Being Recalled: 121,389 Toyota 1983 and 1984 model Camry cars as well as 1984 model Corolla cars equipped with cruise control.

Subject: The cruise control computers of the recalled vehicles can sustain excessive thermal shock which can cause the cruise control to remain engaged upon restarting the engine if the main cruise control switch was left in the "On" position. This condition occurs when the cruise control is shut off after sustained continuous operation followed by exposure to cold ambient temperatures.

This recall was the subject of Preliminary Evaluation PE90-021, of the Office of Defects Investigation.
ADDITIONAL INFORMATION REQUIRED

In order for us to complete our file on this matter, please provide the following additional information:

1. Identify and describe the difference between the recalled cruise control computer and the improved design computer to be installed as a remedy.

2. Identify and describe the nature of the defect, its failure modes, and the specific components which can result in the malfunction or failure. The description should include an identification of the following:
 a. "extensive continuous use . . ." of the cruise control;
 b. "extremely cold ambient temperatures;" and
 c. what is meant by "excessive thermal shock to the cruise control computer;" and
 d. what component(s) can sustain the "excessive thermal shock" resulting in the malfunction of the cruise control computer.

3. Furnish a chronological summary of events which led to the discovery of the defect. The summary should include, but not be limited to, owner reports, field reports, accidents, lawsuits, warranty claim/part sales analyses, investigations or analyses, surveys, and meetings which occurred prior to the determination to conduct a safety recall.

4. Identify the actual number of affected Toyota vehicles under the National Traffic and Motor Vehicle Safety Act involved in this recall by model and model year.

5. Furnish the approximate date on which the improved cruise control computers will be available and when Toyota will begin owner notification.

Please provide this information, referencing the National Highway Traffic Safety Administration (NHTSA) identification codes in the upper right corner of the first page, to this office by April 4, 1990.

If any portion of your response is considered confidential information, include all such material in a separate enclosure marked confidential. In addition, you must submit a copy of all such confidential material directly to the Chief Counsel of NHTSA and comply with all other requirements of 49 CFR Part 512, Confidential Business Information.

QUARTERLY STATUS REPORTS

The first quarterly status report for this campaign in accordance with section 573.5 is required to be submitted within 25 working days after the close of the calendar quarter in which owner notification begins. For
instance, the current calendar quarter ends on March 31, 1990, and the first quarterly report for recalls where owner notification begins in this quarter is due by May 4, 1990.

Please inform this office when owner notification begins, and furnish a copy of the notification documents in accordance with 49 CFR Part 577, entitled "Defect and Noncompliance Notification."

Sincerely,

Michael D. Brownlee, Director
Office of Defects Investigation
Enforcement
RECEIVED
APR 20 1990
RS:300 APR 23 NR 10:42

Mr. Reiji Iida
Vice President
Toyota Motor Corporation Services
of North America, Inc.
1800 N Street, NW
Washington, DC 20036

28: NCF-1111J12, 90V-015

Dear Mr. Iida:

We have received your letter dated April 4, 1990, in which you request confidential treatment for certain documents which contain technical information in the form of a summary of simulation test procedures developed by Toyota. After careful review, we have concluded that the information you have identified is entitled to confidential treatment because the public release of this information could cause substantial competitive harm to your company.

This grant of confidentiality is subject to certain conditions since it was submitted pursuant to a safety defect investigation. It may be disclosed under the authority of 15 U.S.C. §518(a)(1)(B) and 49 C.F.R. §512.9, upon a finding by this Agency that such information is necessary to effect the purposes of the National Traffic and Motor Vehicle Safety Act. In addition, the information may also be disclosed under 49 C.F.R. §512.8, based upon newly discovered or changed facts, and you must inform the National Highway Traffic Safety Administration of any changed circumstances which may affect the protection of the information (49 C.F.R. §512.4(2)).

Prior to the release of information under 49 C.F.R. §512.8 or §512.9, you would be notified in accordance with the procedures established by our regulations.

Sincerely,

K. Neister
Assistant Chief Counsel
for General Law

cc: NCC-01 RP §5/301, NCF-11, J. White
April 4, 1990

Mr. Stephen P. Wood
Acting Chief Counsel
National Highway Traffic Safety Administration
400 Seventh Street, E.W.
Washington, D.C. 20590

RE: NRP-111j6w, 90V-040

Dear Mr. Wood:

Enclosed is a copy of Toyota's response to the letter of March 15, 1990, from the Director, Office of Defects Investigation, requesting information concerning the cruise control safety recall of 1983-1984 Toyota Camrys and 1984 Toyota Corollas. This response has been sent to the Office of Defects Investigation under separate cover.

We claim that Attachment I to the enclosed response contains confidential technical information in the form of a summary of simulation test procedures which were developed by Toyota. This technical information is proprietary and highly sensitive, and would be valuable to our competitors. Release to competitors of any material which is claimed to be confidential may result in significant competitive damage to Toyota.

Therefore, we request that Attachment I of this response, claimed to be confidential, be treated as such. Toyota appreciates your support of our claim of confidentiality with respect to the attachments so identified.

If this request and the supporting affidavit are found to be insufficient to establish Toyota's entitlement to confidential treatment, we ask that, pursuant to 49 CFR §512.4(i)(2), you
Mr. Stephen P. Wood
April 4, 1990
Page 2

afford us the opportunity to supplement this request. We understand that in accordance with §512.6(b)(1), your determination to grant or deny confidentiality will be made within 30 days and communicated to us at that time.

If we can be of further help, please contact Mr. K. Sato of my staff at (202) 775-1707.

Sincerely,

TOYOTA MOTOR CORPORATE SERVICES OF NORTH AMERICA, INC.

Teiji Tida
Vice President

cc: Mr. Michael B. Brownlee
AFFIDAVIT IN SUPPORT OF
REQUEST FOR CONFIDENTIALITY

I, Teiji Iida, being duly sworn, depose and say:

(1) That I am Vice President, Toyota Motor Corporate Services of North America, Inc. ("TMCS"), and that I am authorized by Toyota Motor Corporation (Japan) ("TMC") to execute documents on its behalf.

(2) That the information contained in Attachment I to our response to the March 15, 1990 NHTSA request regarding the cruise control safety recall of Toyota Camrys and Corollas is confidential and proprietary data and is being submitted with the claim that it is entitled to confidential treatment and protected from disclosure under 5 U.S.C. 55e (b)(4) and 15 U.S.C. 2007 (d)(1).

(3) That I have personally inquired of the responsible TMC personnel who have authority in the normal course of business to release the information for which a claim for confidentiality has been made to ascertain whether such information has ever been released outside TMC and TMCS.

(4) That based on such inquiries to the best of my knowledge the information for which TMC has claimed confidential treatment has never been released or become available outside TMC and TMCS.

(5) That I make no representations beyond those contained in this affidavit and in particular I make no representations as to whether this information may become available outside TMC and TMCS, because of unauthorized or inadvertent disclosure; and

(6) That the information contained in the enumerated paragraphs of this affidavit is true and accurate to the best of my information, knowledge and belief.

Teiji Iida
Vice President

DISTRICT OF COLUMBIA: ss

Signed in the presence of me, Kathryn E. Goedtel, a Notary Public in and for the District of Columbia, this 6th day of April, 1990.

Kathryn E. Goedtel
Notary Public
Attachment I
Attachment 1

Simulation Test

Thermal shock test was conducted for the subject computer using the cycle shown in Fig. 1, which was used during the development stage.

As a result, there were no abnormalities as shown in Fig. 2.

Thereupon, based on the fact that the cruise control computer failures occurred in Canadian vehicles only, we conducted a detailed investigation focusing on the temperature. As a result, we found that the surface temperature of the custom I.C. when the cruise control was set, is higher than when the cruise control main switch only is placed in the "ON" position, which is the test condition during development. The temperature difference between these is shown in Fig. 3.
Simulation Test by Revised Test Condition

In consideration of the foregoing, we changed the cycle of the thermal shock test as shown in Fig. 4 and conducted the test.

Fig. 5 shows the test results. Cracks were found on the soldered terminal of the custom I.C. at 50 to 80 cycles and the soldered portion was fractured at 110 to 140 cycles.

![Figure 4: New Test Method](image)

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Number of Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer</td>
<td>20 40 60 80 100 120 140 160 180 200</td>
</tr>
<tr>
<td>Test Computers</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>(Completion) Results</td>
<td>Crack at 50 to 80 cycles</td>
</tr>
<tr>
<td></td>
<td>Malfunction at 110 to 140 cycles</td>
</tr>
<tr>
<td></td>
<td>Delta: Crack</td>
</tr>
<tr>
<td></td>
<td>Cross: Computer Malfunction</td>
</tr>
</tbody>
</table>

![Figure 5: Test Results](image)

Conclusion

We found the temperature increase by self-generating heat from the custom I.C. is higher than that expected during development. The soldered terminal is stressed by contraction/expansion of the printed circuit board and custom I.C. due to repetition of excessive thermal shock (See Fig. 6). It could cause the soldered terminals of the custom I.C. to develop cracks and finally may lead to a complete separation of the soldered terminals, resulting in non-conductivity of the circuit.

![Figure 6: Stress on the Soldered Portion](image)
April 4, 1990

Mr. Michael B. Brownlee, Director
Office of Defects Investigation, Enforcement
National Highway Traffic Safety Administration
400 Seventh Street, S.W.
Washington, D.C. 20590

RE: NEF-111jdw
 90V-040

Dear Mr. Brownlee:

This is in response to your March 15, 1990 request for additional information concerning Toyota’s NHTSA Recall Campaign Number 90V-040.

Please note that the information claimed to be confidential is contained in a separate enclosure marked "Confidential." In addition, a copy is being sent to the Chief Counsel's office under separate cover in accordance with the directions in your letter.

The requested information is as follows:

Q.1. Identify and describe the difference between the recalled cruise control computer and the improved design computer to be installed as a remedy.

Response 1

The improved design computer incorporates a fail-safe function to prevent engine racing should the computer fail. Failure releases computer control of the throttle. Of course, the throttle can be controlled manually.
Q.2. Identify and describe the nature of the defect, its failure modes, and the specific components which can result in the malfunction or failure. The description should include an identification of the following:

a. "extensive continuous use . . ." of the cruise control;
b. "extremely cold ambient temperatures;"
c. what is meant by "excessive thermal shock to the cruise control computer;" and
d. what component(s) can sustain the "excessive thermal shock" resulting in the malfunction of the cruise control computer.

Response 2

The expansion and contraction of board and custom I.C. in the cruise control computer as a result of the self-generating heat of the custom I.C. due to continuous use of the cruise control followed by exposure to cold conditions after shutting off the cruise control leads to repeated stress to the soldered terminals of the unit. Repetition of this cycle could eventually cause the soldered terminals of the custom I.C. to develop cracks, and finally may lead to a complete separation of the soldered terminals and non-conductivity of the circuit.

The failure modes in the worst case are as follows:

- If the engine is started with the cruise control main switch "on", the engine may race until that cruise control switch (or brake switch) is deactivated. For details on temperature and number of cycles, see Attachment I.
- While driving the cruise control main switch in the "on" position (or turned "on"), engine speed may increase until that cruise control switch (or brake switch) is deactivated.

It should be noted that under all circumstances, application of the foot brake will cancel cruise control operation.
Q.3. Furnish a chronological summary of events which led to the
discovery of the defect. The summary should include, but
not be limited to, owner reports, field reports,
accidents, lawsuits, warranty claim/part sales analyses,
investigations or analyses, surveys, and meetings which
occurred prior to the determination to conduct a safety
recall.

Response 3

November to December, 1989 Two malfunctioning cruise control
computers returned from 1984 model Canadian Camrys were
investigated. For details of this investigation see the
investigation report (Attachment II).

December, 1989 to January, 1990

As a part of the continuing investigation, Toyota recovered and
tested other computers from Canadian vehicles produced before
and after the date of manufacture of the failed computer. For
test results, see Attachment III.

In addition, we simultaneously conducted the simulation test
referred to in Response 2 (Attachment I).

Based on these investigations, the thermal shock computer
malfunction was identified.

February, 1990

Toyota decided to initiate a safety recall campaign for 1983
and 1984 model year Camry vehicles and 1984 model year Corolla
vehicles in both the U.S. and Canadian markets, all of which
utilize the identical cruise control computer.

There are no accidents or lawsuits known to Toyota pertaining
to these vehicles, nor are there any owner reports or field
reports identifying this malfunction.
Dear Mr. Michael A. Brownlee, Director of the National Traffic and Motor Vehicle Safety Act:

Your letter of April 1, 1990, and simultaneously the Improved Curves Program, will begin over the next few months. The approximate date when Toyota will begin over the next few months.

5. Pursuant to the recall for the improved curves on which the improved curves.

1969 1973 Corolla
1974 1983 Celica
1984 1983 Celica
1994 1982 Celica
30,796 1983 Model Year

The actual number of affected vehicles involved in this recall by model and model year are as follows:

4. Identify the actual number of affected Toyota vehicles involved in this recall by model and model year.

Page 4, April 4, 1990

Sincerely,

President, Toyota Indiana
Attachment II
Attachment II

1984 Camry Cruise Control Computer Investigation Report

1. Vehicle Data
 (1) Yves Arcoust Case
 Model : 1984 Toyota Camry
 VIN : JT2SV16E9E0072706
 Date of Manufacture : September, 1983
 Date of Purchase : July, 1987 (Current Owner)
 Date of Incident : unknown
 Odometer Reading : 152,191 km
 Owner Complaint : Cruise control caused vehicle to accelerate to full throttle.
 Recovered Part : Cruise Control Computer
 (Part Number : 88240-32021)

 (2) Gilbert Pinet Case
 Model : 1984 Toyota Camry
 VIN : JT2SV16H3E0063610
 Date of Manufacture : August, 1983
 Date of Purchase : unknown
 Date of Incident : unknown
 Odometer Reading : 149,180 km
 Owner Complaint : Cruise activates to full throttle when main switch is on.
 Recovered Part : Cruise Control Computer
 (Part Number : 88240-32021)

2. Investigation Items
 (1) Appearance observation of the computer assembly.
 (2) Function check
 (3) Voltage check
 (4) Soldering condition observation
 (5) Coating material observation
3. Investigation Results

(1) Appearance observation of the computer assembly

No abnormality was found on the outside or inside of the case for both computers.

Photo 1 Connector Side
Yves Arcouet Case

Gilbert Pinet Case

Photo 2 Bracket Side
Yves Arcouet Case

Gilbert Pinet Case
(2) Function Check

Since an actual vehicle was not available, we checked the cruise control computer function with the bench checker. When the MAIN switch was ON under room temperature, both computers did not perform all functions properly. This failure mode indicated a condition that would cause the actuator to continuously pull the throttle.

See Table 1 on next page.
(3) Voltage Check

(3)-1 Voltage check at connector terminal

Table 2 and 3 show the voltage measuring results at each connector terminal, applying 12V to the power supply terminal. With the ignition switch ON and the cruise control MAIN switch ON, the voltage observed at control valve and release valve terminal was such that it would cause the actuator to always activate.

Table 2 Voltage at the connector terminals (Yves Arcouet Case)

<table>
<thead>
<tr>
<th>No.</th>
<th>Terminals</th>
<th>Voltage (V)</th>
<th>Judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>failed part</td>
<td>normal part</td>
</tr>
<tr>
<td>1</td>
<td>Release Valve</td>
<td>9.7</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>Gnd</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>Control Valve</td>
<td>10.1</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>SET/COAST S/W</td>
<td>11.2</td>
<td>11.2</td>
</tr>
<tr>
<td>5</td>
<td>T/M Control Relay</td>
<td>12.0</td>
<td>12.0</td>
</tr>
<tr>
<td>6</td>
<td>Speed Sensor</td>
<td>10.9</td>
<td>10.1</td>
</tr>
<tr>
<td>7</td>
<td>Main S/W</td>
<td>12.0</td>
<td>12.0</td>
</tr>
<tr>
<td>8</td>
<td>Stop Lamp S/W</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>Stop Lamp Fuse</td>
<td>12.0</td>
<td>12.0</td>
</tr>
<tr>
<td>10</td>
<td>Gnd</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>11</td>
<td>Neutral Start S/W</td>
<td>10.7</td>
<td>10.9</td>
</tr>
<tr>
<td>12</td>
<td>Parking Brake S/W</td>
<td>12.0</td>
<td>12.0</td>
</tr>
<tr>
<td>13</td>
<td>RESUME/ACCEL S/W</td>
<td>11.2</td>
<td>11.2</td>
</tr>
</tbody>
</table>

Measuring condition

+ B = 12.00 V
Ignition S/W = ON
MAIN S/W = ON
SPEED = 0 Km/h

All data in this report was obtained under the same measuring conditions.

Fig 1 Connector terminal
Table 3 Voltage at the connector terminals (Gilbert Pinet Case)

<table>
<thead>
<tr>
<th>No.</th>
<th>Terminals</th>
<th>Voltage (V)</th>
<th>Judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>failed part</td>
<td>normal part</td>
</tr>
<tr>
<td>1</td>
<td>Release Valve</td>
<td>9.6</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>Gnd</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>Control Valve</td>
<td>10.1</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>SET/COAST S/W</td>
<td>11.2</td>
<td>11.2</td>
</tr>
<tr>
<td>5</td>
<td>T/M Control Relay</td>
<td>12.0</td>
<td>12.0</td>
</tr>
<tr>
<td>6</td>
<td>Speed Sensor</td>
<td>10.9</td>
<td>10.1</td>
</tr>
<tr>
<td>7</td>
<td>Main S/W</td>
<td>12.0</td>
<td>12.0</td>
</tr>
<tr>
<td>8</td>
<td>Stop Lamp S/W</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>Stop Lamp Fuse</td>
<td>12.0</td>
<td>12.0</td>
</tr>
<tr>
<td>10</td>
<td>Gnd</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>11</td>
<td>Neutral Start S/W</td>
<td>10.7</td>
<td>10.9</td>
</tr>
<tr>
<td>12</td>
<td>Parking Brake S/W</td>
<td>12.0</td>
<td>12.0</td>
</tr>
<tr>
<td>13</td>
<td>RESUME/ACCEL S/W</td>
<td>11.1</td>
<td>11.2</td>
</tr>
</tbody>
</table>

Measuring condition

- $V_{+} = 12.00 \text{ V}$
- Ignition S/W = ON
- MAIN S/W = ON
- SPEED = 0 Km/h

All data in this report was obtained under the same measuring conditions.

Fig 2 Connector terminal
(3)-2 Voltage check at transistor and custom I.C. terminals

After removing the printed circuit board from the casing, the voltage at the transistor and custom I.C. terminals was measured for both computers by applying 12V to the power supply terminal. Measuring points are included in Fig. 3 (circuit diagram) and are both sides (one is the soldering side and the other is the elements side) of the printed circuit board at each connector terminal. Voltage measuring results are shown in Table 4 through 7.

1. Voltage check on the soldering side (Both computers)

The transistor TR1 (for control valve) and TR2 (for the release valve), which operate the actuator, were both activated.

Although the voltage at the No.1 and and No.2 terminal of the custom I.C., which are terminals that receive the control signal from the microprocessor, were normal, there existed a voltage level difference between the failed part and the normal part. The voltage at the No.15 and No.16 terminals, which are terminals that output the signal to the transistors, was abnormal resulting in continuous of activation of these transistors.

The voltage at the No.12 and No.13 terminal of the custom I.C., which are terminals for the power source and the voltage of the transistor TR4 (for the power source control) were abnormal.
2. Voltage check on the elements side (Both computers)

The voltage level at the No. 3 terminal (for power source Vcc) on the element side was different from that on the soldering side.
This means that the open circuit mode occurred in the soldering portion on the No. 3 terminal of the custom I.C..

To confirm whether the cause of this failure mode is the open circuit on the No. 3 terminal or not, we measured the voltage level at each terminal by connecting the copper clad (A) and the No. 3 terminal (B) using another wire as shown in Fig. 4.

Consequently, the voltage level at each terminal was the same as that of the normal part and the computer performed all functions properly. Test results are included in table 4 through 7.

Fig 4 No. 3 Terminal Repair
Table 4 Voltage at the transistor terminals (Yves Arcouet Case)

<table>
<thead>
<tr>
<th>No.</th>
<th>Terminals</th>
<th>Voltage (V)</th>
<th>Failed Part</th>
<th>Normal Part</th>
<th>Judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>As Received</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soldering Side</td>
<td>Elements Side</td>
<td>Repair No.3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>TR1 **</td>
<td>Base</td>
<td>10.2</td>
<td>10.2</td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Collector</td>
<td>10.1</td>
<td>10.1</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Emitter</td>
<td>10.9</td>
<td>10.9</td>
<td>11.3</td>
</tr>
<tr>
<td>2</td>
<td>TR2 **</td>
<td>Base</td>
<td>10.2</td>
<td>10.2</td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Collector</td>
<td>9.7</td>
<td>9.7</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Emitter</td>
<td>10.9</td>
<td>10.9</td>
<td>11.3</td>
</tr>
<tr>
<td>3</td>
<td>TR4 **</td>
<td>Base</td>
<td>6.8</td>
<td>6.8</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Collector</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Emitter</td>
<td>7.5</td>
<td>7.5</td>
<td>6.2</td>
</tr>
</tbody>
</table>

* TR1 : Control Valve Drive Transistor
** TR2 : Release Valve Drive Transistor
*** TR4 : Vss Control Transistor

Table 5 Voltage at the custom I.C. terminals (Yves Arcouet Case)

<table>
<thead>
<tr>
<th>No.</th>
<th>Terminals</th>
<th>Voltage (V)</th>
<th>Failed Part</th>
<th>Normal Part</th>
<th>Judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>As Received</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soldering Side</td>
<td>Elements Side</td>
<td>Repair No.3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>IN - A</td>
<td>10.1</td>
<td>10.1</td>
<td>8.2</td>
<td>8.2</td>
</tr>
<tr>
<td>2</td>
<td>IN - B</td>
<td>10.2</td>
<td>10.2</td>
<td>11.2</td>
<td>11.3</td>
</tr>
<tr>
<td>3</td>
<td>Vcc</td>
<td>11.2</td>
<td>9.3</td>
<td>11.2</td>
<td>11.3</td>
</tr>
<tr>
<td>4</td>
<td>CD - C</td>
<td>11.2</td>
<td>11.2</td>
<td>11.2</td>
<td>11.2</td>
</tr>
<tr>
<td>5</td>
<td>CD - D</td>
<td>11.2</td>
<td>11.2</td>
<td>11.2</td>
<td>11.2</td>
</tr>
<tr>
<td>6</td>
<td>CD - E</td>
<td>7.4</td>
<td>7.4</td>
<td>6.1</td>
<td>6.1</td>
</tr>
<tr>
<td>7</td>
<td>CD - J</td>
<td>10.2</td>
<td>10.2</td>
<td>10.6</td>
<td>10.7</td>
</tr>
<tr>
<td>8</td>
<td>CD - F</td>
<td>11.0</td>
<td>11.0</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>9</td>
<td>Not used</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>CD - H</td>
<td>9.4</td>
<td>9.4</td>
<td>11.0</td>
<td>11.0</td>
</tr>
<tr>
<td>11</td>
<td>Not used</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Vss</td>
<td>7.5</td>
<td>7.5</td>
<td>6.2</td>
<td>6.2</td>
</tr>
<tr>
<td>13</td>
<td>Vih</td>
<td>8.1</td>
<td>8.1</td>
<td>6.9</td>
<td>6.9</td>
</tr>
<tr>
<td>14</td>
<td>Vee</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>15</td>
<td>OUT - B</td>
<td>10.2</td>
<td>10.2</td>
<td>11.2</td>
<td>11.2</td>
</tr>
<tr>
<td>16</td>
<td>OUT - A</td>
<td>10.2</td>
<td>10.2</td>
<td>11.2</td>
<td>11.2</td>
</tr>
</tbody>
</table>
Table 6 Voltage at the transistor terminals (Gilbert Pinet Case)

<table>
<thead>
<tr>
<th>No.</th>
<th>Terminals</th>
<th>Voltage (V)</th>
<th>Failed Part</th>
<th>Normal Part</th>
<th>Judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>As Received</td>
<td>After Repair No.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soldering Side</td>
<td>Elements Side</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>TR1**</td>
<td>Base 10.2 10.2</td>
<td>Collector 10.1 10.1</td>
<td>Emitter 10.9 10.9</td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td>TR2**</td>
<td>Base 10.2 10.2</td>
<td>Collector 9.8 9.8</td>
<td>Emitter 10.9 10.9</td>
<td>11.2</td>
</tr>
<tr>
<td>3</td>
<td>TR4***</td>
<td>Base 6.8 6.8</td>
<td>Collector 0.0 0.0</td>
<td>Emitter 7.5 7.5</td>
<td>5.6</td>
</tr>
</tbody>
</table>

* TR1 : Control Valve Drive Transistor
** TR2 : Release Valve Drive Transistor
*** TR4 : VSS Control Transistor

Table 7 Voltage at the custom I.C. terminals (Gilbert Pinet Case)

<table>
<thead>
<tr>
<th>No.</th>
<th>Terminals</th>
<th>Voltage (V)</th>
<th>Failed Part</th>
<th>Normal Part</th>
<th>Judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>As Received</td>
<td>After Repair No.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soldering Side</td>
<td>Elements Side</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>IN - A</td>
<td>10.1 10.1</td>
<td>8.3</td>
<td>8.3</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>IN - B</td>
<td>10.2 10.2</td>
<td>11.2</td>
<td>11.3</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Vcc</td>
<td>11.2 9.2</td>
<td>11.2</td>
<td>11.3</td>
<td>NG</td>
</tr>
<tr>
<td>4</td>
<td>CD - C</td>
<td>11.2 11.2</td>
<td>11.1</td>
<td>11.2</td>
<td>OK</td>
</tr>
<tr>
<td>5</td>
<td>CD - D</td>
<td>11.1 11.1</td>
<td>11.1</td>
<td>11.2</td>
<td>OK</td>
</tr>
<tr>
<td>6</td>
<td>CD - E</td>
<td>7.4 7.4</td>
<td>6.1</td>
<td>6.1</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>CD - J</td>
<td>10.2 10.2</td>
<td>10.7</td>
<td>10.7</td>
<td>OK</td>
</tr>
<tr>
<td>8</td>
<td>CD - F</td>
<td>11.0 11.0</td>
<td>7.5</td>
<td>7.5</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Not used</td>
<td>9.3 9.3</td>
<td>11.0</td>
<td>11.0</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>CD - H</td>
<td>9.3 9.3</td>
<td>11.0</td>
<td>11.0</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>Not used</td>
<td>9.3 9.3</td>
<td>11.0</td>
<td>11.0</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>Vss</td>
<td>7.5 7.5</td>
<td>6.2</td>
<td>6.2</td>
<td>NG</td>
</tr>
<tr>
<td>13</td>
<td>Vfb</td>
<td>8.1 8.1</td>
<td>6.9</td>
<td>6.9</td>
<td>NG</td>
</tr>
<tr>
<td>14</td>
<td>Vee</td>
<td>0.0 0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>OK</td>
</tr>
<tr>
<td>15</td>
<td>OUT - B</td>
<td>10.2 10.2</td>
<td>11.2</td>
<td>11.2</td>
<td>NG</td>
</tr>
<tr>
<td>16</td>
<td>OUT - A</td>
<td>10.2 10.2</td>
<td>11.2</td>
<td>11.2</td>
<td>NG</td>
</tr>
<tr>
<td>Checked Function</td>
<td>Explanation</td>
<td>Results</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. SET</td>
<td>The desired speed is set by SET switch ON.</td>
<td>NG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. COAST</td>
<td>While the SET switch is held ON, the vehicle speed is decelerated. When the switch is released, constant-speed-control starts at that speed.</td>
<td>NG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. CANCEL</td>
<td>The preset speed is cancelled by depressing the brake pedal.</td>
<td>NG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. CANCEL</td>
<td>If the shift lever is positioned "N" range, the preset speed is cancelled.</td>
<td>NG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. CANCEL</td>
<td>The preset speed is cancelled by setting the parking brake.</td>
<td>NG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. RESUME</td>
<td>After the preset speed is cancelled when the RESUME switch is turned ON, the vehicle resumes the set speed prior to cancellation.</td>
<td>NG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. ACCEL</td>
<td>If the vehicle is running under control of this system, with the RESUME switch being hold on, the vehicle speed is accelerated. When the switch is released, constant-speed-control starts at the speed.</td>
<td>NG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. LOW-SPEED LIMITER</td>
<td>If the vehicle slows down to less than the low speed limit, the preset speed is automatically cancelled and the stored speed is cleared.</td>
<td>NG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. HIGH-SPEED LIMITER</td>
<td>Prohibiting the system from setting the speed when the vehicle speed is over the high-speed-limit.</td>
<td>NG</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Soldering Condition Observation

(1) Appearance observation of the soldering portion

With microscopic observation, cracks were found on the soldered terminals of the custom I.C.

Photo 4 shows the No.3 terminal. Cracks were found around the soldered terminal.

Cracks were also found on the No.2, No.4 and No.8 terminals for Yves Arcouet case and on the No.2 and No.14 for Gilbert Pinet case. Photo 5 shows the No.8 terminal for Yves Arcouet case and the No.14 terminal for Gilbert Pinet case.

Photo 4 No.3 Terminal of the Custom I.C.

| Yves Arcouet Case | Gilbert Pinet Case |
Photo 5 No.8 and No.14 Terminals of the Custom 1.C.

Yves Arcouet Case
(No.8 Terminal)

Gilbert Pinet Case
(No.14 Terminal)
(2) Cross section observation of the soldering portion

With microscopic observation of the soldering portion on the No.3 terminal of custom I.C., it was found that the solder was fractured along the terminal as shown in Photo 6 and 7.

Photo 6 Cross Section Cut-Away of No.3 Terminal
(Yves Arcouet Case)

Magnified Upper Right Area
Photo 7 Cross Section Cut-Away of the No.3 Terminal
(Gilbert Pinet Case)

Magnified Upper Right Area
5. Coating Adhesion around the Custom I.C.

No abnormality was found for the coating adhesion condition as shown in Photo 8.

Photo 8 Coating Adhesion around the Custom I.C.
Yves Arcouet Case Gilbert Pinet Case

6. Conclusion
Based on the aforementioned results, we have concluded that the failure mode for both computers was caused by the open circuit due to a solder fracture on the No.3 terminal of the custom I.C.
Attachment III
Sender: Complete items 1 and 2 when additional services are desired. Complete items 3 and 4.

Put your address in the "RETURN TO" space on the reverse side. Failure to do this will prevent the card from being returned to you. The return receipt fee will provide you the name of the person delivered to and the date and time of delivery. For additional fees the following services are available: Consult postmaster for fees and check box(es) for additional services requested.

1. X Show to whom delivered date, and addressee's address.
2. Restricted Delivery
 (extra charge)

3. Article Addressed to:
 Mr. Teiji Tada
 Vice President
 Toyota Motor Corporation
 of North America, Inc.
 1850 M Street, NW
 Washington, DC 20036

4. Article Number
 P 699 729 368
 Type of Service:
 □ Registered □ Certified □ COD
 □ Express Mail □ Return Receipt
 for Merchandise
 Always obtain signature of addressee
 or agent and DATE DELIVERED.

5. Signature - Addressed
 X

6. Signature - Agent
 X

7. Date of Delivery
 MAR 16 1990

PS Form 3811, Apr. 1989
U.S.G.P.O. 1989-538-818
DOMESTIC RETURN RECEIPT

Jdvo
9ov-4vo
y-4-90
INFLUENCED RECALL CAMPAIGNS

NAME OF MANUFACTURER: __Toyota__

RECALL CAMPAIGN NUMBER: __90V-040__

ACTION THAT INFLUENCED RECALL:

PE: __90-021/S. France__

EA: ________________

CASE: ________________

CIR: ________________

OTHER: ________________
INFLUENCED RECALL CAMPAIGNS

NAME OF MANUFACTURER: Toyota

RECALL CAMPAIGN NUMBER: Gov-040

ACTION THAT INFLUENCED RECALL:

PE: 90-031, S. Francisco

EA:

CASE:

CTR:

OTHER:
February 28, 1990

Mr. Michael B. Brownlee, Director
Office of Defects Investigation, Enforcement
National Highway Traffic Safety Administration
400 Seventh Street, S.W.
Washington, D.C. 20590

RE: Defect Information Reports

Dear Mr. Brownlee:

In accordance with the requirements of the National Traffic and Motor Vehicle Safety Act of 1966 and 49 CFR Part 573, on behalf of Toyota Motor Corporation we hereby submit a Defect Information Report concerning 1983 and 1984 model year Toyota Canry and 1984 Toyota Corolla vehicles.

Sincerely,

TOYOTA MOTOR CORPORATE SERVICES OF NORTH AMERICA, INC.

Teiji Tida
Vice President

cc
Enclosure
DEFECT INFORMATION REPORT

1. Manufacturer Corporate Name:

Toyota Motor Corporation
Toyota-cho, Toyota-city
Aichi-ken, 471 JAPAN

Affiliated U.S. Importing Company:

Toyota Motor Sales, U.S.A., Inc.
19001 South Western Avenue
Torrance, California 90509

2. Identification of Involved Vehicles:

<table>
<thead>
<tr>
<th>Model</th>
<th>Model Year</th>
<th>VDS</th>
<th>VIN</th>
<th>Production Period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1984</td>
<td></td>
<td>0000001 - 0263194</td>
<td>August 1983 - August 1984</td>
</tr>
</tbody>
</table>

Note: Although the involved vehicles are within the above VIN ranges, not all vehicles in these ranges were imported into the U.S.

3. Total Number of Vehicles Potentially Involved:

121,389 units

4. Percentage of Vehicles Estimated to Contain Defect:

Unknown
5. **Description of Defect:**

Shutting off of the cruise control after extensive continuous use followed by exposure to extremely cold ambient conditions may result in excessive thermal shock to the cruise control computer. Repetition of this cycle may lead to a cruise control computer malfunction.

In the worst case malfunction, should the engine be re-started with the cruise control main switch left in the "ON" position, the engine may race until the cruise control switch (or ignition) is turned "OFF."

6. **Chronology of Principal Events:**

<table>
<thead>
<tr>
<th>Date</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov. 1989</td>
<td>As part of the investigation of two malfunctioning cruise control computers returned from 1984 model Canadian Camrys, we recovered and investigated other computers from Canadian vehicles produced before and after the date of manufacture of the failed computer. As a result of this investigation, the thermal shock computer malfunction was identified.</td>
</tr>
<tr>
<td>Feb. 1990</td>
<td>Toyota decided to initiate a safety recall campaign for 1983 and 1984 model year Camry vehicles and 1984 model year Corolla vehicles in both the U.S. and Canadian markets, all of which utilize the identical cruise control computer.</td>
</tr>
</tbody>
</table>

7. **Description of Corrective Repair Action:**

All known owners of the subject vehicles will be notified by first class mail to return the vehicle for replacement of the computer with one of improved design.

8. **Recall Schedule:**

The owner notification letter will be mailed as soon as parts are available. Copies of the owner notification and dealer instructions will be submitted as soon as they are available.
TO: ALL REGION/PRIVATE DISTRIBUTOR GENERAL MANAGERS

SUBJECT: SPECIAL SERVICE CAMPAIGN - L01

Toyota will initiate a special service campaign to replace the factory installed cruise control computer with an improved design on certain 1983 and 1984 Toyota Camrys and 1984 Corollas.

The following vital information is provided to inform you and your staff of the campaign schedule and your degree of involvement required:

1. Dealer, Owner Notification
 - Dealer notification package mailing date: March 28, 1990 (copy attached)
 - Owner notification letter mailing date: April 6, 1990

2. Number of Vehicles Involved in Your Region
 - Please refer to the enclosed SSC L01 summary report, by region/district/dealer. This list indicates the number of vehicles involved in this campaign in your region.
 - This list may be utilized by your staff for future follow up.

Please review this entire special service campaign package with your staff and make sure that all appropriate personnel are completely familiar with its contents so that they may provide the necessary support to your dealers and maximize our combined customer satisfaction efforts.

Your cooperation in this matter would be greatly appreciated.

Sincerely,

Richard J. Gallio
Vice President, Service

Enclosures

cc: Reg./Pvt. Dist. Service Mgrs. H. Bracken M. Imai
Reg./Pvt. Dist. C.R. Mgrs. T. Fujita R. McCurry
Reg./Pvt. Dist. Parts Mgrs. T. Kawamura A. Wagner
All Service Dept. Mgrs. D. West
TO: ALL TOYOTA DEALERS AND SERVICE MANAGERS

SUBJECT: SPECIAL SERVICE CAMPAIGN - LO1

Toyota will initiate a special service campaign to replace the factory installed cruise control computer with an improved design on certain 1983 & 1984 Toyota Camrys and 1984 Corollas.

Shutting off the cruise control after extensive continuous use followed by exposure to extremely cold ambient conditions may result in excessive thermal shock to the cruise control computer. Repetition of this cycle may lead to a cruise control computer malfunction.

You are requested, using the following information, to install the improved design cruise control computer on the vehicles involved in this campaign, including all vehicles currently in your stock.

Note: You will be sent SSC notifications with your dealer's name and address for vehicles which, according to our record, you have in stock. If any vehicles in your stock involved in this campaign have been sold to an ultimate customer prior to receipt of this notification, please contact this known customer and perform the necessary repairs.

1. Owner notification letter mailing date
 April 6, 1990 (copy attached)

2. Identification of involved vehicles:

<table>
<thead>
<tr>
<th>Model</th>
<th>Model Year</th>
<th>VIN Range</th>
<th>Production Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toyota</td>
<td>1984</td>
<td>AE82E - AE82L</td>
<td>April 1983 -</td>
</tr>
<tr>
<td>Corolla</td>
<td></td>
<td>AE83E - AE83L</td>
<td>August 1984</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AE85S - AE86S</td>
<td>March 1983 -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0000001 - 0089798</td>
<td>August 1984</td>
</tr>
<tr>
<td>Toyota</td>
<td>1983</td>
<td>SV12E - SV16E</td>
<td>Sept. 1982 -</td>
</tr>
<tr>
<td>Camry</td>
<td>1984</td>
<td>SV12H - SV16H</td>
<td>August 1984</td>
</tr>
<tr>
<td></td>
<td>1984</td>
<td>CV12E</td>
<td>August 1983 -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0000001 - 0203194</td>
<td>August 1984</td>
</tr>
</tbody>
</table>

Note: Although the involved vehicles are within the above VIN ranges, not all vehicles in these ranges were imported into the U.S.
The enclosed special service campaign dealer/owner list (SSC 101) indicates each customer’s name, address and vehicle identification number that are involved in this campaign in your area. You may also utilize this for your future follow-up system.

3. Repair procedures
 Refer to the attached Technical Instructions.

4. Parts ordering
 As with all campaigns, necessary parts must be ordered from your facing Parts Distribution Center.

 In order to avoid excessive parts orders and maintain adequate parts inventory, it is highly recommended that your initial parts order of the cruise control computer does not exceed 10% of the number of the vehicles indicated on the enclosed special service campaign dealer/owner list (SSC 101).

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Veh. Application</th>
<th>Quantity per Veh.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS240-32022</td>
<td>Cruise Control Computer</td>
<td>Camry</td>
<td>1</td>
</tr>
<tr>
<td>SS240-12011</td>
<td>Cruise Control Computer</td>
<td>Corolla Sport (SRS Coupe & 3 Dr. Liftback)</td>
<td>1</td>
</tr>
<tr>
<td>SS240-12041</td>
<td>Cruise Control Computer</td>
<td>Corolla Sedan (Sedan & 5 Dr. Liftback)</td>
<td>1</td>
</tr>
</tbody>
</table>

5. Reimbursement procedures
 Submit special service campaign claims following the procedures described in the Toyota Warranty Policy & Procedures Manual.

The operation codes to be used for this campaign is listed below.

<table>
<thead>
<tr>
<th>SSC # Op. Code</th>
<th>Description</th>
<th>Applicable Model</th>
<th>Flat Rate Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO1</td>
<td>Replace cruise control computer and verify function</td>
<td>Corolla</td>
<td>1.1</td>
</tr>
<tr>
<td>LO1</td>
<td>Replace cruise control computer and verify function</td>
<td>Camry</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Note: The above operation codes includes 0.1 flat rate hour for administrative expenses.

Please review this entire package with your Service and Parts staff to familiarize them with the proper step-by-step procedure and implement this special service campaign to ensure customer satisfaction.

Thank you for your cooperation.

Sincerely,

[Signature]
Richard J. Gallio
Vice President, Service
Note: Before starting any work on the vehicle, install protective covers on the front seats.

1. Necessary Parts

<table>
<thead>
<tr>
<th>Part Name</th>
<th>Part No.</th>
<th>Applicable Model</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Assy.</td>
<td>88240-32022</td>
<td>Camry</td>
<td>1</td>
</tr>
<tr>
<td>Speed Control</td>
<td>-1201</td>
<td>Corolla Sport</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>-1204</td>
<td>Corolla Sedan</td>
<td>1</td>
</tr>
</tbody>
</table>

2. Location of the cruise control computer assembly

1983 & 1984 Camry

1984 Corolla (SR5 Sport Coupe & 3 Dr Liftback)

1984 Corolla (Sedan & 5 Dr Liftback)
3. **Cruise Control Computer Replacement**

For 1983 & 1984 Camry

1] Turn the ignition switch to the lock position.

2] Remove the right front scuff plate.

3] Remove the right cowl side trim.

4] Remove the seat belt warning relay mounting screw in order to obtain enough space for cruise control computer removal.

 Caution: Do not disconnect the wiring connector from the relay.

5] Replace the cruise control computer with an improved one.

 (a) Disconnect the wiring connector from the computer.

 (b) Remove two mounting bolts.

 (c) Remove the cruise control computer.

 (d) Install a new computer and connect the wiring connector.

6] Reinstall the seat belt warning relay mounting screw.

7] Install the right cowl side trim.

8] Install the right front scuff plate.
1. Turn the ignition switch to the lock position.
2. Remove the left scuff plate.
3. Remove the left cowl side trim.
4. Remove the No. 1 speaker panel.
5. Remove the lower finish panel with speaker.
6. Replace the cruise control computer with improved one.
 (a) Disconnect the connector from the computer.
 (b) Remove mounting bolt.
 (c) Using a small screw driver, release the clip behind the computer from bracket.
 (d) Remove the computer.
 (e) Install the improved computer and connect the wiring connector.
 (f) Install the clip and mounting bolt.
7. Install the lower finish panel.
8. Install the No. 1 speaker panel.
9. Install the left cowl side trim.
10. Install the left scuff plate.
1984 Corolla (Sedan & 5 Dr Liftback Models)

1) Turn the ignition switch to the lock position.
2) Remove the right scuff plate.
3) Remove the right cowl side trim.
4) Remove the No. 2 speaker panel.

5) Remove the speaker bracket with speaker.

6) Replace the cruise control computer with an improved one.
 (a) Disconnect the connector from the computer.
 (b) Remove mounting bolt.
 (c) Using a small screwdriver, release the clip behind the computer.
 (d) Remove the computer.
 (e) Install the improved computer and connect the wiring connector.
 (f) Install clip and mounting bolt.

7) Install the speaker bracket with speaker.
8) Install the No. 2 speaker panel.
9) Install the right cowl side trim.
10) Install the right scuff plate.
4. **Inspection**

1) Make sure that all the removed parts have been reinstalled properly.

2) Check the cruise control system.

 Cruise Control Switches

 For 1983 & 1984 Camry Models

 ![Main Switch Diagram]

 a) Main switch function

 - Turn the ignition switch on.
 - Check that the indicator light comes on when the main switch is turned on and goes off when the main switch is turned off.

 b) Control switch function

 - Check that the "SET (COAST)" and "ACCEL (RESUME)" switches function smoothly, and the switches return to their original positions when released.

 c) Cruise control system function (described basically on Camry).

 Drive vehicle and check for the following:

 Setting at a desired speed

 - Bring the vehicle to a desired speed, move the control lever downward in the "SET (COAST)" direction (AE8#: push the "SET (COAST)" switch in) and release it. Then make sure that the vehicle has been set at that speed.

 Resetting at a faster speed

 - After setting at a desired speed, move the control lever toward the "ACCEL (RESUME)" side and hold it. Release the lever when the desired speed is attained. Check that the vehicle will gradually gain speed while the lever is held.

 Resetting at a slower speed

 - After setting at desired speed, move the control lever toward the "COAST (SET)" direction (AE8#: push the "COAST (SET)" switch in) and hold it. Release the lever when the desired speed is attained. Check that the vehicle speed will gradually decrease while the lever is held.
Cancelling the preset speed

- Check that the preset speed is cancelled by any of the following functions:
 - Depressing the brake pedal
 - Depressing the clutch pedal (manual transmission).
 - Placing the selector lever in "N" (automatic transmission).
 - Slightly pulling on the parking brake lever
 - Turning off the cruise control main switch

Resuming the preset speed

- Move the control lever toward the “RESUME (ACCEL)” direction.
The vehicle should resume the speed set prior to cancellation unless the vehicle has slowed to less than 25 mph (40 km/h).

5. Completion Label

1. After completing repair and before returning vehicle to the customer, a SSC completion label that is enclosed in the owner's letter must be affixed to the firewall, make sure that the surface is clean and dry to ensure proper adhesion of the label.

2. The label is to be filled out as follows:

 ![Label Diagram]

 - Write in SSC # LO1
 - Write in date of repair
 - Write in your dealer code

3. Additional SSC completion labels (P/N 00410-01917) may be ordered through the non-parts system on a 1450 order form or through the TDN system.
Dear Toyota Customer:

This notice is sent to you in accordance with the requirements of the National Traffic and Motor Vehicle Safety Act.

Toyota has determined that a defect which relates to motor vehicle safety exists on certain 1983 & 1984 Toyota Camrys and 1984 Corollas.

What is the problem?

If the cruise control computer is subjected to excessive temperature variations repeatedly for a long time, the following symptoms may result:

- If the engine is started with the cruise control main switch "on", the engine may race.
- If the cruise control main switch is placed in the "on" position while driving, engine speed may increase.
- Should you experience these conditions, the unanticipated engine and/or vehicle speed increases may momentarily impair your control of the vehicle and a crash can occur. Until your vehicle is repaired you can avoid the possibility of experiencing any of these conditions by leaving the cruise control main switch in the "off" position.

What will Toyota do?

- Any Toyota dealer will replace the cruise control computer with an improved one.

What should you do?

- Contact any Toyota dealer and make an appointment to have the cruise control computer on your vehicle replaced at no cost to you. The repair will take approximately one hour to perform, however, administrative procedures at the dealership may require that your vehicle be made available for a longer period of time.
- If you no longer own the vehicle, please indicate so on the enclosed postage paid form, providing us with the name and address of the new owner.

What if you have other questions?

- If you are in the continental United States, please contact your local Toyota dealer or:
 Toyota Customer Assistance Center
 1-800-331-4331

If you are in the non-continental United States, please see the list of contacts on the last page of this communication.

- If your dealer or Toyota fails or is unable to respond within a reasonable period of time, you may contact:
 Administrator
 National Highway Traffic Safety Administration
 400 Seventh Street S W
 Washington, D.C. 20590
 or call their toll free Auto Safety Hotline:
 1-800-424-9393 (Washington D.C. area call 368-0123).

We have sent this notice in the interest of your safety and continued satisfaction with our products and we sincerely regret any inconvenience that may have caused you.

Thank you for owning a Toyota.

Sincerely,

TOYOTA MOTOR SALES, U.S.A., INC.
CORPORATE SERVICE DEPARTMENT