
 11/6/13

2005 Camry
L4 Software
Analysis

Michael
Barr

BOOKOUT V.
TOYOTA

 11/6/13

MICHAEL BARR

Embedded Software Expert

Electrical Engineer (BSEE/MSEE)

Experienced Embedded Software

Developer
Named inventor on 3 patents

Consultant & Trainer (1999-present)
Embedded Software Process and
Architecture for reliability
Various industries (e.g., pacemakers,
industrial controls)

Former Adjunct Professor
University of Maryland 2000-2003 (Design and Use of Operating
Systems) Johns Hopkins University 2012 (Embedded Software
Architecture)

Served as Editor-in-Chief, Columnist, Conference Chair

Author of 3 books and 65+ articles/papers

2
2

 11/6/13

BOOKS BY MICHAEL BARR

1ed:
2003

1ed: 2008; 2ed:
2012

1ed: 1999; 2ed:
2006

3
3

 11/6/13

EMBEDDED SYSTEMS DEFINED

“Embedded Systems”
Electronics + software for a dedicated purpose
Many billion more new embedded systems each year

microwave ovens, digital watches, pacemakers,
thermostats You are surrounded by them (like it or not;
safe or not)

Embedded systems in cars
Modern cars contain networks of embedded computers!

Anti-lock brakes, airbags, speedometer, GPS, radio, …
Some carmakers brag over 100 microprocessors inside!

Each headlight, each mirror, each seat, …

Barr Chapter Regarding

4
4

Toyota’s Operating
Systems

 11/6/13

MY REVIEW OF TOYOTA’S SOURCE CODE

Access to Toyota’s “electronic throttle” source code
In a secure room in Maryland
Subject to confidentiality agreements

For vehicle models with ETCS spanning ~2002-2010 model
years

Camry, Lexus ES, Tacoma, and others

Approximately 18 months of calendar time with code
By a very experienced team of embedded systems experts

Including 3 other engineers from Barr Group

Building upon NASA’s earlier source code review; digging
deeper

5
5

 11/6/13

EXAMPLE C LANGUAGE SOURCE CODE

function

int larger_of(int a, int b)
{

if (a > b)
{

return
a;

variable

/* a contains the larger value
*/}

else
{ comment

return b; /* b contains the larger
value */

}
}
6

 11/6/13

fdadg

7

ELECTRONIC THROTTLE CONTROL

 11/6/13

TOYOTA’S ENGINE CONTROL MODULE (ECM)

Main
CPU
(“V850
”)
contai
ns
softwa
reMonitor

Chip
(“ESP-B2”)

contai
ns

softwa
re

8

 11/6/13

SAFETY-CRITICAL SYSTEMS

Not all embedded systems can kill or injure people …
Those that can do harm are “safety-critical systems”

What could possibly go wrong?
A glitch in the electronics (random hardware faults will
happen) A bug in the software (any reasonably complex
software has bugs) An unforeseen gap in the intended safety
features
Or all three: glitch activates bug and that slips thru safety gap

Safety cannot be an afterthought; must be designed in
Redundancy and fault containment are key

Barr Chapter Regarding

9 Toyota’s Watchdog
Supervisor

 11/6/13

ELECTRONIC THROTTLE CONTROL (ETCS)

“Toyota ETCS-i is an example of a safety-critical hard real-time
system.”

- NASA, Appendix A, p. 118

NASA, p.
1310

10

 11/6/13

SUMMARY OF 2005 CAMRY L4 CONCLUSIONS

Toyota’s ETCS source code is of unreasonable
quality

Toyota’s source code is defective and contains bugs
Including bugs that can cause unintended
acceleration

Code quality metrics predict presence of additional
bugs

Toyota’s fail safes are defective and inadequate
“House of cards” safety architecture

Random hardware and software faults are a fact of
life

Misbehaviors of Toyota’s ETCS are a cause of UA

11
11

Barr St. John
Report

 11/6/13

UNINTENDED ACCELERATION (UA)

I use the same definition as NHTSA and NASA:
“any degree of acceleration that the vehicle driver did
not purposely cause”

NHTSA, p. vi

I also use the phrase “loss of throttle control”
Throttle controls airflow, which controls engine power

12
12

Barr St. John
Report

 11/6/13

NASA DID NOT RULE OUT UA BY SOFTWARE

NASA, pp.15-
20

13
13

 11/6/13

THERE ARE DEFECTS IN TOYOTA’S ETCS

2005 Camry L4 source code and in-vehicle tests
confirm:

Some critical variables are not protected from corruption
Mirroring was not always done
 NASA didn’t know this (believed mirroring was
always done)
No hardware protection against bit flips
 NASA didn’t know this (was told main CPU’s RAM had
EDAC)

Sources of memory corruption are present
Stack overflow can occur
 NASA didn’t know this (was told stack less than half
used)
There are software bugs
 NASA found bugs (and Barr Group has found others)

Thus Toyota’s ETCS software can malfunction …

1
4

Barr St. John
Report

 11/6/13

15

ETCS SOFTWARE MALFUNCTION

 11/6/13

SOFTWARE MALFUNCTIONS HAPPEN

All kinds of embedded
systems experience partial
software malfunction from
time-to-time

e.g., most other apps working,
but phone calls go direct to voice
mail “Have you tried rebooting
it?”

The 2005 Camry L4 software has
a set of 24 “apps” (called
“tasks”)

All are meant to be running
always

1
6

Barr St. John
Report

 11/6/13

TOYOTA’S OPERATING SYSTEM (OSEK)

Barr Chapter Regarding
Toyota’s Operating
Systems

17
17

 11/6/13

OSEK’S CRITICAL DATA STRUCTURES

Barr Chapter Regarding
Toyota’s Operating
Systems

18
18

 11/6/13

MEMORY CORRUPTION AND TASK DEATH

0

Bit flip here kills 1
task!

Barr Chapter Regarding
Toyota’s Operating
Systems

19
19

 11/6/13

20

EXAMPLE OF UNINTENDED ACCELERATION

task
death

> 90
mph

time
(seconds)

spe
ed
(bl
ue)

stuck
throttle

30 second
unintended
acceleratio

n due to
task death;
no fail safe

acts

set
speed
(68
mph) brake

state
(green
)

s
p
e
e
d

(
k
p
h
)

 Representative of
task death in real-
world

 Dead task also
monitors accelerator
pedal, so loss of
throttle control
 Confirmed in tests

 When this task’s
death begins with
brake press (any
amount), driver must
fully remove foot
from brake to end UA
 Confirmed in

tests

(r
ed
)

Source: Loudon Vehicle
Testing

 11/6/13

SOFTWARE CAUSES OF MEMORY CORRUPTION

2
1

Toyota’s Software
Bugs

Barr Chapter
Regarding

Type of
Software Defect

Causes Memory
Corruption?

Defect in
2005 Camry L4?

Buffer Overflow Yes Yes

Invalid Pointer
Dereference/Arithmetic

Yes Yes

Race Condition
(a.k.a., “Task
Interference”)

Yes Yes

Nested Scheduler Unlock Yes Yes

Unsafe Casting Yes Yes

Stack Overflow Yes Yes

 11/6/13

SPAGHETTI CODE DEFINED

 Difficult to follow data/control
paths Bugs likely to appear when
modified Unnecessarily complex

2
2

Systems Dictionary,
2003

Ganssle&Barr,
Embedded

 11/6/13

TOYOTA’S SPAGHETTI CODE

TOY-
MDL04983210

2
3

 11/6/13

TYPES OF SPAGHETTI CODE

Data-flow spaghetti
Complex coupling between software modules and between
tasks Count of global variables is a software metric for
“tangledness”

2005 Camry L4 has >11,000 global variables (NASA)

Control-flow spaghetti
Many long, overly-complex function bodies

Cyclomatic Complexity is a software metric for “testability”
2005 Camry L4 has 67 functions scoring >50 (“untestable”)
The throttle angle function scored over 100
(unmaintainable)

Barr Chapter Regarding
Toyota’s Code
Complexity

2
4

 11/6/13

STACK ANALYSIS FOR 2005 CAMRY L4

4,096
bytes
94% (vs. the 41% Toyota told
NASA!)

OSEK
Data
+
Recursion

1,024
bytes

Recursion violates a MISRA-C
rule
(1998: #70; 2004: #16.2)

Barr Chapter
Regarding Toyota’s
Stack Analysis

2
5

 11/6/13

NASA’S VIEW ON RECURSION

NASA was concerned about possible stack
overflow…

… and NASA didn’t know there was so little safety
margin!

2
6

NASA, Appendix A, pp. 20, 129-
134

 11/6/13

TOYOTA’S MAJOR STACK MISTAKES

Toyota botched its worst-case stack depth analysis
Missed function calls via pointers (failure to automate)
Didn’t include any stack use by library and assembly functions

Approximately 350 functions ignored
HUGE: Forgot to consider OS stack use for context switching!

On top of that… Toyota used dangerous recursion

And… Toyota failed to perform run-time stack
monitoring

A safety check that the cheaper 2005 Corolla ECM
had!

Barr Chapter
Regarding Toyota’s
Stack Analysis

2
7

 11/6/13

TOYOTA FAILED TO COMPLY WITH STANDARDS

Operating System Standards

“OSEK” is an international standard API
Specifically designed for use in automotive
software Multiple suppliers of OSEK operating
systems

Compliance tests ensure compatibility across versions

But Toyota’s Rx-OSEK850 version is non-
standard!!!

Was not certified as OSEK compliant

Certified products for V850 were available by 2002

Barr Chapter Regarding
Toyota’s Operating
Systems

2
8

 11/6/13

TOYOTA FAILED TO COMPLY WITH STANDARDS

Automotive Industry Coding Guidelines

MISRA-C – motor industry software reliability coding rules for C
By 2004, “the successes and global use of MISRA-C across
automotive, aerospace, medical, and other industries has been
staggering.”

“In Japan, we have worked with representatives of JSAE, JAMA, …”

From 2002-2004, Toyota said in public they followed MISRA-C
But NASA reported > 7,000 violations of some of the rules (p. 29)
I checked the full set and found > 80,000 in violations in 2005 Camry L4

Toyota’s coding standard only has 11 MISRA-C rules
And 5 of those are violated in the actual source code

Barr Chapter Regarding
Toyota’s MISRA-C
Violations

2
9

 11/6/13

VIOLATING CODING RULES CAUSES
BUGS

In the words of Toyota
itself:

3
0

VANALFEN006972 (Kawana,
2004)

 11/6/13

TOYOTA FAILED TO COMPLY WITH STANDARDS

Internal Coding Standards

Toyota maintains a set of company internal coding rules
Specifically for “power train” ECM software developers to
follow

Mr. Ishii’s statement about 50% MISRA-C overlap was found
false

NASA reported Toyota didn’t follow some of its rules (p. 22)
I found at least 32% of Toyota’s coding rules were violated

Enforcement is the most important part of having a rule

Demonstrates lack of engineering discipline at Toyota
Part of a larger pattern of inadequate software
process/oversight

Inadequate and untracked peer code
reviews No bug-tracking system

Barr Chapter Regarding
Toyota’s Coding
Standards

3
1

 11/6/13

TOYOTA ADMITS ETCS HAS SOFTWARE BUGS

Barr Chapter
Regarding Toyota’s
Software Bugs

3
2

A: When it comes to software, there are going to be
bugs, and [that] is the case not just with Toyota but
with [any] software in the automotive industry and
any software. So the issue is not whether or not
there is a bug but rather is the bug an important
material bug.

– Ishii 5/24/12 Deposition, p. 91

Indeed there are bugs, including “important material
bugs”

 11/6/13

NASA’S SOFTWARE AREAS OF CONCERN

NASA, Appendix B, pp. 36-39
= Defects Found by Barr
Group

Barr Chapter
Regarding Task
Death and UA

3
3

 11/6/13

TOYOTA’S DEFECTIVE “SAFETY LAYERS”

Mirroring of Critical
Variables

Layer
1

Barr Chapter Regarding
Toyota’s Memory
Protections

Barr Chapter
Regarding Toyota’s
Fail-Safe Modes

Barr Chapter Regarding
Toyota’s Watchdog
Supervisor

Barr Chapter
Regarding Toyota’s
Monitor CPU

3
4

DTCs and Fail-Safe
Modes

Layer
2

Watchdog
Supervisor

Layer
3

ESP-B2 Monitor
CPU

Layer
4

 11/6/13

LAYER 1: MIRRORING OF CRITICAL VARIABLES

Toyota’s engineers sought to protect numerous
variables against software- and hardware-caused
corruptions

e.g., by “mirroring” their contents in a 2nd location

But FAILED TO MIRROR several key critical variables
OSEK’s critical internal data structures
THE target throttle angle global
variable!

Commands a part of the software to
open the throttle

 Recalculated every 8 ms
(when the tasks are all alive)

Corruption is indistinguishable from
a driver gas pedal press!

Barr Chapter Regarding
Toyota’s Memory
Protections

3
5

 11/6/13

THROTTLE COMMAND DESIGN

throttle
comma

nd
(e.g.
20%)

wri
te

Moto
r

Contr
ol

Task

re
adTas

k X

Barr Chapter Regarding
Toyota’s Software
Architecture

3
6

 11/6/13

UA VIA MEMORY CORRUPTION

Task X death causes loss of throttle control by driver
Changes at the accelerator pedal have no effect on throttle
angle Cruise control switches have no effect

Motor Control Task continues to drive throttle motor; engine
powered

Throttle could stick at last computed throttle command, or
Change angle via corruption of throttle command global
variable

One corruption event can cause task death and open
throttle

Memory corruptions are like ricocheting bullets

Barr Chapter
Regarding Task
Death and UA

3
7

 11/6/13

TOYOTA’S DEFECTIVE THROTTLE CONTROL

unmirror
ed

command
(e.g.
50%)

Memory
Corruption

Moto
r

Contr
ol

Task

re
ad

“Fail-Safes” Monitoring This Portion
Only (no knowledge of driver’s actual
intent)

dea
d

Task
X

Death not
Detected

Barr Chapter
Regarding Toyota’s
Software Bugs

3
8

 11/6/13

LAYER 2: DTCs AND FAIL-SAFE MODES

NASA talks about 5 fail-safe modes (pp. 79-83)
Limp home modes 1-3 (degrees of gas pedal sensor mistrust)
Idle mode fuel cut (2,500 rpm limit at idle)

Engine off (via several different “class 2” failures)

However, all 5 fail-safes are in same Task X
Throttle control and fail-safes in same fault containment
region

Unreasonable design; alternative structures well-known

Most diagnostic trouble codes need Task X too!

Barr Chapter
Regarding Toyota’s
Fail Safe Modes

39
39

 11/6/13

LAYER 3: WATCHDOG SUPERVISOR

A “watchdog timer” is hardware to auto-reset software
Healthy software should periodically “check-in” to prevent
reset

With multiple tasks, health of all tasks must be
checked

Barr Chapter Regarding
Toyota’s Watchdog
Supervisor

40
40

 11/6/13

TOYOTA’S DEFECTIVE WATCHDOG DESIGN

Toyota’s watchdog supervisor design is unreasonable
Incapable, ever, of detecting death of majority of tasks
Incapable of properly and reliably detecting CPU overload
Allows vehicle misbehavior due to overloads lasting up to
1.5s Resets the watchdog timer hardware in a timer tick ISR

Explicitly ignores and discards most operating system error codes

Ignoring error codes violates a MISRA-C rule (1998: #86; 2004: #16.10)

Reasonable design alternatives were well known
Indeed the primary purpose should’ve been to detect task death

2005 Prius (HV-ECU) watchdog is better

Barr Chapter Regarding
Toyota’s Watchdog
Supervisor

41
41

 11/6/13

LAYER 4: ESP-B2 MONITOR CPU

“System Guards”
All (3) useless after Task X death (don’t know driver intent)

“Brake Echo Check”

Depends on the driver to take action—after UA has already
begun!

Sometimes a counter-intuitive/dangerous action
 Clearly this is not a “designed” fail-safe for UA or task

death Takes the wrong actions (should’ve reset ECM not stalled
car) Not 100% reliable

Does not detect all main CPU malfunctions

Barr Chapter
Regarding Toyota’s
Monitor CPU

42
42

 11/6/13

TOYOTA FAILED TO REVIEW MONITOR CPU

Barr Chapter
Regarding Toyota’s
Monitor CPU

43
43

A: With respect to [the monitor CPU], the
development process is completely different. When it
comes to the source code that would be embedded in
[the monitor CPUs] we, Toyota, don’t receive them.
… there would not be a design review done on the
software.

Q: Now, the monitoring software for the electronic
throttle control system is in the [] ESP-B2 chip;
correct?

A: Yes.

- Ishii 5/24/12 Deposition, pp. 36-37

 11/6/13

AGAIN: FAILED TO REVIEW MONITOR CPU!

The critical “monitor CPU” that checks the main
CPU has never been independently reviewed

Toyota doesn’t even have a copy of the source code
NASA didn’t review that critical system component
either

ESP-B2 source code was not provided to NASA
Barr Group has reviewed Denso’s ESP-B2 source code

Monitor CPU for 2005-2009 Camry L4 (and some other
models)

!
?

Barr Chapter
Regarding Toyota’s
Monitor CPU

44
44

 11/6/13

MONITOR CPU IS LAST LINE OF UA DEFENSE

But ESP-B2 monitor CPU could have included a proper UA defense:
IF (driver is braking & throttle is not closing) THEN reset ECM

Something is not right with the main CPU when that
happens! Resets of main CPU barely noticeable at speed
(brief rpm drop)

CRITICAL to ending UA in vehicles with potential vacuum loss

Per car cost to add this safety feature is $0.00 (it’s just
bits) There was enough memory and CPU bandwidth for these

instructions All of the required electrical inputs and outputs were
already present In line with E-Gas Level 3 recommendations

Barr Chapter
Regarding Toyota’s
Monitor CPU

45
45

 11/6/13

TOYOTA’S DEFECTIVE SOFTWARE PROCESS

FMEA was incomplete; single points of failure are present
Because: Toyota didn’t adopt a formal safety process

Peer reviews not done on OS code and ESP-B2 code
Because: Toyota didn’t perform code reviews; used non-standard
OSEK

Toyota’s own “power train” coding standard not enforced
Because: Toyota didn’t follow through with software suppliers

Watchdog supervisor doesn’t detect most task’s deaths
Generally costs less to push the limits than upgrade to faster CPU

No EDAC protection against hardware bit flips
Generally costs less to make memory chips without EDAC

If confident, why let NASA believe there was
EDAC?

46
46

 11/6/13

47

TOYOTA’S INADEQUATE SOFTWARE PROCESS

Barr Chapter Regarding
Toyota’s Code
Complexity

 Toyota failed to exercise a
safe standard of care for
software

 Relied too much on
vendors

 Lacked internal expertise

 Inadequate supervision
and training of software

 11/6/13

4
8

TOYOTA’S DEFECTIVE SAFETY CULTURE

TOY-MDL016058888P-
0001

 11/6/13

NASA SOUGHT WHAT BARR GROUP FOUND

NASA p.
78

“Single memory corruption results in
UA” “Fault escapes detection”

“No EDAC error” (because there is no EDAC!)
“Idle fuel cut not active” (because in same
task) “Watchdog serviced” (because defective
design)Monitor-CPU “does not detect failure” (because not designed
to)

“Openings up to wide open throttle”

49
49

Barr St. John
Report

 11/6/13

UNREASONABLE SINGLE POINTS OF FAILURE

Safety critical systems shouldn’t have single points of
failure

This is the normal mode of design in automotive industry

Toyota tried to mitigate such risks, including in software
But missed some dangerous single points of failure

Failed to prevent or contain faults …

There are single points of failure in the ETCS
Some demonstrated in 2005 and 2008 Camry L4 vehicles
Unpredictable range of vehicle misbehaviors via task
death Other memory corruptions can be expected

50
50

Barr St. John
Report

 11/6/13

51

INDIVIDUAL TASK DEATH OUTCOMES

(Watchdog should have detected them all!)

Task
Death

Response (Fail-
Safe)

1 ms
task

ECM Reset
(watchdog)

wheel
speed

Not
Detected

crank
speed

Not
Detected

engine
speed

Not
Detected

sigma
task

stall (comm.
Check)

motor
control

if accel change stall (sys
guards)

spark on
cyl. 1

Not
Detected

spark off
cyl. 1

Not
Detected

spark on
cyl. 2

Not
Detected

spark off
cyl. 2

Not
Detected

spark on
cyl. 3

Not
Detected

spark off cyl. 3 Not Detected

Sources: Arora and Loudon Vehicle Testing; source code
analysis.

Task
Death

Response (Fail-
Safe)

spark on
cyl. 4

Not
Detected

spark off
cyl. 4

Not
Detected

fuel
injection

stall
(mechanical)

10°
task

Not
Detected

30°
med

stall
(mechanical)

Tas
k X

if brake change cut-stall
(echo)

duty
solenoid

Not
Detected

rcv a
task

if accel change cut
(echo)

rcv b
task

if brake change cut
(echo)

8 ms
task

stall
(immobilizer)

30°
low

Not
Detected

idle task Not Detected

Legend: “Not Detected” means in at least one vehicle
test.

 11/6/13

5
2

THE TEST SPACE IS EFFECTIVELY INFINITE

There are >16 million combinations of task death
Memory corruption can kill 1, 2, or all 24

Each task can die in thousands of different states
Vehicle operational states (e.g., cruise on/off; accel 5% vs.
50%)

And what happens next; driver reactions to misbehaviors;
etc.

Internal software
states

Test “samples” so far
confirm

Claimed fail-safes
inadequate!

O
P
E
R
A
T
I
O
N
A
L
S
C
E
N
A
R
I
O
S

TIMING AND
SEQUENCING

FAIL
UR
E

TY

PE
S

TOO
MANY

POSSIBL
E TESTS

Barr Chapter
Regarding Task
Death and UA

 11/6/13

53

Source: Loudon St. John
Report

UA FOREVER IF BRAKE ON AT TASK DEATH

Vehicl
e

speed
is

~ 45
mph

Gas
pedal
does
not

affect
speed
any

more!
None of the

“fail-safes”
act

> 30
seconds

Brake
on

(even
lightly)
at start
of task
death

Fail-
safe
acts
only
after
driver
remov
es foot
(fully)
from
brake

 11/6/13

CASE-SPECIFIC OPINIONS

ETCS misbehavior is more likely than other causes
Car should have stopped in less distance if throttle not open
(McCort) Eyewitness testimony of alert driver using brakes (Mrs.
Schwarz)
No evidence of pedal entrapment by a floor mat (photos)
No mechanical problems found at any vehicle inspection (experts)

Cannot identify with 100% certainty the specific software
defects

Toyota’s software design “deletes” evidence of software problems
Restart car and engine is fine (Toyota should have logged errors)

More likely than not undetected Task X death
Many brake pumpers don’t fully release the brake pedal
(Cooper) “Car sped up when brakes were pumped” makes
sense

5
4

 11/6/13

OTHER SIMILAR INCIDENT CRITERIA

Vehicles with substantially similar ETCS software
e.g., 2005-2009 Camry

Incidents with no apparent mechanical cause
Lack of support for floor mats trapping accelerator
pedal No indication of any mechanical issue before or
after

Driver and witness statements describe UA
And no evidence contradicting correct use of pedals

OSI Sources: NHTSA complaint database, Toyota FTRs,
claims
5
5

Barr St. John
Report

 11/6/13

TOYOTA’S EXPERT’S EVOLVING STATEMENTS

ETCS contains “layers of protection” (Jul 2012)

True, but misses the key point: there are gaps thru those layers

Brake echo is a “designed fail-safe” (Sep 2012-Aug 2013)

No, IF it were “by design” the fail-safe

would NOT require the driver to act before the fail-safe! would

NEVER require removal of foot from brake pedal

 counter-intuitive (in an emergency!) and likely to increase (!)
risk of harm

would NOT stall the engine (given ECM reset is correct & safer)

“It depends on how much fuel” (Sep
2013)

56

 11/6/13

TOYOTA’S EXPERT HAS NOT REBUTTED

Most of Dr. Koopman’s
opinions/report

57

My Operating System
opinions/chapter My Software Bugs
opinions/chapter
My Memory Protections
opinions/chapter
My Software Architecture
opinions/chapter My Watchdog Supervisor
opinions/chapter
My Fail-Safe Modes opinions/chapter
My MISRA-C Violation
opinions/chapter My Coding Standard
opinions/chapter My Code
Complexity opinions/chapter My
Stack Analysis opinions/chapter

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

